
Board Level IEEE1149.1 Boundary Scan
Built In Self Test

By
Stephen Harrison: Motorola steve.harrison@motorola.com

Peter Horwood: Firecron Ltd Sales@firecron.com

Abstract—IEEE1149.1 Boundary Scan has become
an important test technique within complex IC's and
boards in today's electronic assemblies, providing a
low cost, high fault coverage test methodology for
digital designs.
The most common approach is for the IEEE1149.1
test to be performed in factory with test vectors being
supplied by external test equipment, however new
IEEE1149.1 test support devices are now becoming
available that support enhanced IEEE1149.1 test
solutions, by enabling system and field use of
IEEE1149.1, while also embedding IEEE1149.1 test
capability within a design.
This paper shows how the IEEE1149.1 tests
developed for factory test can be embedded and reused
within a product, providing a high quality
GO/NOGO built in self test (BIST) capability during
the entire products life cycle.
This embedded IEEE1149.1 BIST technique will be
demonstrated by showing an implementation within
a complex real life telecommunication product; it will
take the readers through the basic hardware and
software design requirements.

STANDARD IEEE1149.1 TEST

The Boundary-Scan tests prime function is to
establish that all Jtag testable digital connections on
an electronic assembly are free of faults, a typical test
sequence would consist of five functions:
“Infrastructure”, “Interconnect”, “Cluster”, “Device
BIST”, “Device Programming”.

Infrastructure

The first Boundary-Scan test normally performed is a
scan-chain “Infrastructure” check, this establishes
that all the standard IEEE1149.1 bus signals are free
from manufacturing defects and operate correctly
(TDI, TDO, TCK, TMS & TRST) and forms the solid
base from which all-further tests are performed.

Interconnect

The “Interconnect” test performs an open and short
circuit test between all circuit traces on devices that
support IEEE1149.1, this would typically includes

paths through simple components that can be treated
as transparent, i.e. resistors and buffers.

Cluster test

A cluster is defined as a portion of a design that can
be totally accessed and controlled via IEEE1149.1
compliant devices. The “Cluster” test would normally
perform an interconnection and stuck at test of
address lines, data lines and control lines of a specific
cluster, such as SRAM, DRAM Dual-Port etc.

Device Level BIST

Device “BIST” as its name describes, performs an
internal device level test of the silicon, this type of
test is normally seen on larger application specific
integrated circuits (ASIC) devices, although some
smaller devices now have this function.

Device Programming

Its common practice within product manufacturing
for cPLD’s & FLASH memories to be programmed
using IEEE1149.1.

EMBEDDING THE TESTER

The decision to embed a tester will depend on each
company’s approach/strategy to its products ability to
self-test, with cost, hardware and software
engineering playing a major factor, each of these need
to be addressed and a decision made. Motorola’s aim
was to develop with a third party an IEEE1149.1
BIST strategy that could be implemented simply
without the need for an on board microprocessors to
control the BIST sequence.
Motorola chose its 3G digital modem product to
implement IEEE1149.1 BIST as it’s IEEE1149.1
architecture consisted of multiple scan chains
controlled via a multi-drop, hierarchical bridge
device. The 6 scan chains contain a large number of
cPLD’s, FBGA’s, PowerPC’s and ASIC’s, with each
ASIC having its own internal device BIST.
The goal of the IEEE1149.1 BIST sequencer was to
execute board level and device level test vectors on
board without a access to external test equipment, the
test vectors would be ran from several different
scenarios;

a) On power up.
b) Software reset
c) Hardware reset
d) By software request

The hardware solutions chosen to
implement this initially consisted of an IP
core within a cPLD, with external Flash
memory for test vector storage, however
the IP core has now migrated into a
commercially available device.
The features the BIST sequencer supports
are:

1) Run test sequence initiated on
power up.

2) Run test sequence by software
command.

3) Provide a GO/NOGO flag.
4) Ability to change TCK rate via

stored vectors.
5) Ability to execute, compare and

store multiple test sequence
CRC’s.

6) Have the ability for a
microprocessor to access the CRC
results for further analysis.

7) Have the ability for a
microprocessor to re-program the
IEEE1149.1 BIST storage Flash
with new vectors.

8) The ability to “Hold Off”/Control
other devices within the design.

9) Ability to support multiple Flash
memory types.

The hardware implementation chosen for
the 3G design has the BIST sequencer
attached to flash memory for test vector
and result storage.

Test Vectors

The choice of which test vectors to embed rely on
them being:

1) 100% reliable with no ambiguous results.
2) Vector set size.

Another consideration to take into account is the
level/granularity of diagnostic required; this will be
explained in more detail later.

The BIST sequencer reuses test vectors developed
using standard automatic IEEE1149.1 test program
generation tools that can be output/exported in serial
vector format (SVF). The SVF files are then
converted into a compressed binary vector format
(BVF) for use with the BIST Sequencer.

Binary Vector Format (BVF)

A BVF file is generated using the SVF2BVF utility,
this parses and compresses an SVF file generated
from any APTG tool. The BVF format is an
intermediate step prior to generating an optimised 16-
bit wide flash memory image.

Binary Vector Image (BVI)

After single or multiple SVF files have been
converted into their individual BVF files, they need to
be further processed into a Binary Vector Image
(BVI) suitable for storing within flash memory. This
additional processing is performed by the BVF2BVI
utility; its function is to concatenate multiple BVF
files into a single BVI file, generate individual CRC
variables for each of the concatenated tests and add
specific sequencer commands to vary TCK rate etc.
The generated CRC’s are then used to determine pass
or fail status during a BIST sequencer run.

Vector Compression

The vector compression ratio determines the size of
the Flash memory required and is dependant on the
number of SVF test concatenated within the BVI.

As a guide, a typical BV1 compressed “Interconnect”
test for a complex design with thousands of
components occupies approximately 800KB, where
as “Infrastructure” test and “Device BIST” BVI can
be as small as 1-10K. The table below shows some
more typical BVI compression rates.

Format Infra Inter Device BIST
APTG Tool 1K 2.9K N/A
ATPG SVF 0.5K 1.4K 2.0K
BVI 0.15K 0.6K 0.2K

Note: - ATPG size is for internal ASCI file formats.

In order to provide storage for a full factory inter
connect, infrastructure and BIST test for a high
complex PCB, the total Flash memory size would be
16Mbit (TE28F160). However this could be reduced
to 8 or 4 M-bit for infield/system confidence tests.

Vector CRC

As mentioned above each SVF/BVF generates a
CRC, which is stored within the last segment of Flash
memory. The software algorithm used to generate this
is also hardware instantiated within the BIST
sequencer silicon, once a test is initiated via the BIST
sequencer the received TDO data stream generates an
internal CRC signature, once complete the BIST
sequencer will store and compare the CRC with the
software generated CRC signature, setting a pass/fail
flag within the BIST sequencer appropriately.

Programming the BIST Flash

Once the BVI file has been created it must be
programmed into the flash device, this can be
performed in several ways. The quickest is to use the
embedded IEEE1149.1 component within the BIST
sequencer, however it can also be done via the I2C or
SPI interfaces. The SPI & I2C interfaces provide the
facility to locally update and verify the flash image
from the local processor fitted to the PCB.

BIST Execution Commands

The BVF file supports various commands to set-up
and initiate action within the BIST sequencer, the
major system commands are:
"GO": Starts sequencer execution of converted test
vectors generated by third party APTG tools.
"OSC_DIV": Sets the clock divide ratio for the
incoming oscillator to generate the system TCK.
"COMPARE": Compares the LFSR signature
generated by the BIST sequencer when running a test
to the known good value within BIST Flash, it also
sets the error flag if an error present.
"END": Ends the test sequencer execution.

BIST Sequencer Hardware

The BIST Sequencer hardware has been implemented
together with a 6-port IEEE1149.1 bridge in a single
256 I/O 1-mm pitch 17x17-mm BGA device. The
logic implements all the required control, read and
write access to the flash memory as well as providing
GO/NOGO status flag. (See diagram below)

The following section describes in more detail the
sequencer I/O

Sequencer_STATUS(0)
This output signal when high indicates that the
sequencer is executing tests from the Flash memory.
No access to the primary IEEE1149.1 port is possible
when this signal is asserted.

Sequencer_STATUS(1)
This output signal indicates the completion status of
the BIST tests executed by the sequencer from Flash,
a HIGH indicates that the tests have failed and a
LOW a pass

Sequencer_OSC: This input provides the master
BIST clock for the sequencer operation

Sequencer_RST: This active low input signal resets
the sequencer and then initiates the execution of tests
from the Flash device

Sequencer_RUN_IN: This active low input signal
initiates the execution of the Flash tests with out
resetting the sequencer

Sequencer_RST_OUT: This output signal active low
indicates that the execution of tests via the FLASH
was initiated by the Sequencer_RST signal

Sequencer_RUN_OUT: This output signal when low
indicates that the sequencer device is executing tests
from the Flash memory

The BIST Sequencer has been designed to
communicate directly with 16 Bit wide data bus,
utilising the Intel CUI method of controlling the Flash
write operations

Sequencer_FLASH_RD: This active low output signal
provides the read signal to the BIST Flash memory
used to store the test vectors.

Sequencer_FLASH_WR: This active low output
signal provides the write signal to the BIST Flash
memory

Sequencer_FADD: These output signals provide the
address bus to the BIST Flash device.

Sequencer_FDB: These bi-directional signals provide
the data bus to exchange data with the BIST Flash.

I2C& SPI is available to provide the microprocessor
with the ability to communicate with the BIST
Sequencer, utilising this interface the microprocessor
is able to read or write to the Flash memory and also
initiate a run of the BIST Sequencer from a

commanded memory location, this
allows different test sequences to
be stored within the Flash and run
on command. The microprocessor
is able to read from the Flash
memory to identify, which test
failed and using this information
determine if the PCB can be
brought into service using
redundant sections of logic.

Sequencer Test Flow

The BIST test sequence is initiated
via three possible scenarios,
"Power On Reset", "Software
Reset" & "Software Command",
once this has taken place the
device asserts the sequencer status
bit (0) HIGH during the length of
the BIST sequence. Once the
status bit is set the sequencer then
reads and executes the first BVF
memory location. The typical
sequencer flow can be seen in the
diagram below.

Test Segmentation & Selection

The segmentation and selection of the test to be
embedded should be considered carefully, it was our
initial aim to reuse the code developed for factory
test, however this proved to be unsatisfactory due to
the level of diagnostics given, when running your test
vectors in factory you have access to the debug and
analysis tools of your APTG vendor, when embedded
this is not the case. It was therefore necessary to split
the test down to smaller segments each with its own
CRC, this improved the granularity of the diagnostics
provided.
The test was sequence was split down to the
following elements.

• Infrastructure:
• ASIC 1 BIST
• ASIC 2 BIST
• ASIC n BIST
• ASIC n External Memory Test
• SRAM 1 test
• Etc, etc

Other items that should be carefully considered are
the state of any off board I/O when the BIST
sequence is running as this could cause system issues
and or catastrophic system failures.

Test Run Time

Due to the manner in which the sequencer operates
i.e.: - single or multiple tests run time is completely
under the control of the user, the more segmented test
are present, the more the sequencer has to access the
flash to compare CRC’s. The test can typically run
faster than with a dedicated tester due to signal
quality. As a bench mark a typical PCB infrastructure
will take micro seconds where a full factory inter
connect test for a highly complex PCB with over 3K
components and many thousands of nets will take
approx 4 seconds.

FURTHER POSSIBILITIES

FPGA-programming

Another task that must be performed within a system
that incorporates FPGA devices is the loading of the
devices programmable image. Currently there are 2
techniques favoured for device configuration, these
are to store the FPGA image within Flash memory
used by the microprocessor, which enables a parallel
load of the data under control of the microprocessor,

the second is to use IEEE1149.1 serial EEPROM's to
hold the FPGA configuration data. These EEPROM's
are not mainstream flash devices, but are specialised
1 bit wide devices and hence their cost per bit of
storage is more when compared to normal flash
memory.
The sequencer can provide a cost effective solution
for the replacement of the custom EEPROM's, by
incorporating the FPGA programming as part of the
sequence of tests, that runs automatically upon power
on. This involves obtaining an SVF file of the FPGA
image and processing through the Firecron tools in
the same manner as any standard test. The advantage
is that the PCB can be fully tested and FPGA's
programmed avoiding high cost serial EEPROM
devices by utilizing the sequencers industry standard
word wide Flash devices.

ACKNOWLEDGMENTS

We would like to thank Eugene Mullen of Firecron
Limited UK for his invaluable assistance in
supporting the IP core development.
Also Alan Moore and Greg Noeninckx within
Motorola for there development and support
activities.

Abbreviations
3G: Third Generation
APTG: Automatic Program Test Generator
ASIC: Application Specific Integrated Circuit
BIST: Built In Self-Test
BVF: Binary Vector Format
BVI: Binary Vector Image
CPLD: Complex Programmable Logic Device
CRC: Cyclic Redundancy Check
DRAM: Dynamic Random Access memory
EEPROM: Electrically Erasable Programmable

Read Only memory
FPGA: Field programmable Gate Array
IC: Integrated Circuit
IP: Intellectual Property
LFSR: Linear Feedback Shift Register
PCB: Printed Circuit Board
SRAM: Static Random Access Memory
SVF: Serial Vector Format

