Manufacturing Test Strategy Cost Model

Rosa Reinosa Carlos Michel Hewlett-Packard Company

Purpose

- Manufacturing Test Strategy Cost Model developed in conjunction with NEMI.
- Cost model embraces best practices and methodologies used by the participating companies.
- To benchmark and measure the financial impact of selecting a particular test strategy.
- Perform trade-off analysis among various test strategies and gain visibility on the impact of field failures on warranty costs.

Outline

- Introduction
- Current use
- Case Study
- Model Limitations
- Future Work
- Conclusion

Introduction

• The test strategy cost model can help drive quick decisions by demonstrating the value of adding or removing test stages vs. utilizing sampling strategies vs. 100% inspection methods.

• The model is available as an Excel spreadsheet and it is intended to be used on post-reflow PCA test strategies.

 It comprises of 4 major sections: Inputs, Defaults, Calculations, and Outputs Sections.

- Test Strategy Flow
- Yield at each stage
- Defect Escapes
- Test Effectiveness

- Savings Summary
- Test Cost Charts
- ROI Metrics
- TTM Savings

- DPMO
- Yield
- Time To Market
- Test Effectiveness
- Access Multiplier
- Test Time
- Equipment Cost

- False Reject Rate
- Annual Operator Cost
- Repair Yield
- Re-Test Cycles
- Repair Cost
- Diagnostic Cost
- Maintenance Cost

Introduction

The cost model and the user's guide are available to industry (free of charge) on the NEMI website at the following URL:

http://www.nemi.org/projects/ba/test_strat.html

Introduction

http://www.nemi.org/projects/ba/test_strat.html

Field Return		Number inspectio Stra	: or es at		Number o inspection at Strat	of test or n stages egy 2	
Rate	Test Stra	tegies Inputs				×	
	Step 4: Pl	ease Complete the following Te gy 1 Types of Test/Inspection Field Return Rate: 1 of test/inspection 2 on Strategy 1: 2 itage 1 (Name): ICT itage 2 (Name): FT itage 3 (Name): itage 4 (Name):	st Strategies Inpu	Its. Strategy 2 Ty Number of test stages on Stra Stage 1 Stage 2 Stage 3 Stage 4	pes of Test :/inspection tegy 2: (Name):	AXI ICT FT	

Current use of the model

 Since the inception of the model each participating company has continued to validate its accuracy.

• The model's output has been proven to deliver conservative estimates on warranty costs.

 In a recent study, conducted by Hewlett-Packard, the model's accuracy with respect to actual warranty cost impact was validated.

 This comparative analysis was conducted on a product that already had market history.

Case Study - Background

- Product with market & manufacturing history.
- Medium complex board:
 - 600 components 3,000 joints .
- Annual production volume ~ 50K.

Current Strategy

Proposed Strategy $AXI \longrightarrow ICT \longrightarrow FT \longrightarrow ST$

Case Study - Options

- Select to use Yield.
- Time To Market savings not selected.
- ROI metrics selected.

Case Study - Inputs

• Board cost, Field Return cost & Field Return Rate data available.

- All other Information available only for current strategy.
- AXI test effectiveness study performed.
 Test partner programmed AXI equipment.
 Experiment consisted in 500 boards tested with AXI
- Obtained accurate Test Coverage and Test Time from experiment.
- Estimation of all other inputs based on the experiment.

Case Study - Inputs

Equipment cost based on % of utilization.

	AXI	ICT	FT
Equipment Cost	\$ 600,000	\$ 300,000	0
Fixture Cost	0	\$ 15,000	\$ 110,000
Maintenance Cost	\$ 25,000	\$ 20,000	\$ 12,000

Case Study - Inputs

• Production volume: 50K.

	AXI	ICT	FT
Test Time	1 min	0.47 min	3.6 min
Capacity	302,400	643,404	84,000
Utilization	0.165	0.078	0.595
Equipment Cost	\$ 99,206	\$ 23,313	0
Fixture Cost	0	\$ 15,000	\$110,000
Maintenance Cost	\$ 4,134	\$ 1,554	\$ 7,143

Proposed Strategy

Case Study - Outputs

CURRENT STRATEGY

Annual Yield related Costs: **\$ 647 K** (Scrap, Repair, Diagnostic, Field return, re-test)

Annual Equipment related Costs: **\$ 156 K** (Operator, Code, Maintenance, Equipment, Fixture,)

PROPOSED STRATEGY

Annual Yield related Costs: **\$ 280 K** (Scrap, Repair, Diagnostic, Field return, re-test) Annual Equipment related Costs: **\$ 190 K** (Operator, Code, Maintenance, Equipment, Fixture,)

Case Study - Conclusion

 Test Cost Model demonstrated savings when adding AXI into the current strategy.

• Outputs of the model where validated against real data from manufacturing and field.

•The utilization of actual data in the model will drive accuracy onto the calculations.

• The list of package types and their defect levels are not representative of all package types currently available in industry.

In this test cost model we are assuming a 100% diagnostic yield

• This model will not accurately represent results when multiple test stages are used in a complementary manner.

Stage 1StageTest Access
60%Test
formationTest
Coverage
100%

Stage 2 Test Access 40%

> Test Coverage 100%

Actual Coverage

Coverage Calculated by Test Cost Model

Future Work

- The creation and linkage to a DPMO database.
- On-going validation of field related costs with actual warranty costs after a strategy has been selected.
- Enable automatic sensitivity analysis features into the test cost model.
- Enable production capacity analysis features into the model.

Conclusion

- The model is intended to be used by engineers or managers that are responsible for making decisions on test strategies for their company.
- Standardization of the economic analysis of production test strategies will bring consistency to the overall approach for determining the financial impact of various test techniques.
- The model is available to industry (free of charge) on the NEMI website at the following URL: http://www.nemi.org/projects/ba/test_strat.html

Manufacturing Test Strategy Cost Model

2003 International Test Conference

