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Abstract 
Board level Boundary Scan testing as defined in IEEE-
1149.1 is well established in the electronics industry. To 
achieve the best possible test coverage and testability for 
a specific design, a thorough DfT1 Analysis is required 
though. DfT for Boundary Scan does not just include 
routing the scan chain and taking care of compliance pins 
on Boundary Scan devices. It also concerns non-
Boundary Scan circuitry such as logic or memory 
clusters. Modern memory devices, especially synchronous 
memories, become more complex and faster with each 
generation. This paper suggests ways to ensure that those 
memory clusters will still be testable via Boundary Scan. 
Also, alternatives to memory cluster tests will be 
discussed, such as BIST2 and test resources embedded in 
the memory device. 

 

1. Introduction 
The purpose of this paper is to provide the reader with an 
overview of the capabilities and limitations of various 
board and system level Boundary Scan (a.k.a. IEEE-
Std.1149.1, JTAG) applications common for modern 
electronics. Test applications such as Interconnect Testing 
(Continuity Testing) between Boundary Scan I/O pins 
and between Boundary Scan and non-Boundary Scan I/O 
pins will be discussed as well as In-System Configuration 
(ISC) applications for EEPROM3 and PLD4/FPGA5 
devices. We will focus especially on board level memory 
cluster test applications. Topic related Design-For-
Testability guidelines will be interwoven throughout the 
paper. The basics of the IEEE-1149.1 standard will not be 
discussed in this paper. Rather, readers not familiar with 
the subject are referred to [1] and [2].  

IEEE-1149.1 (referred to as Boundary Scan throughout 
this paper) describes a quasi static test methodology for 
                                                 
1 DfT: Design for Testability 
2 BIST: Built-In Self Test 
3 EEPROM: Electrical Erasable Programmable Read Only 
Memory 
4 PLD: Programmable Logic Device 
5 FPGA: Field Programmable Gate Array 

digital circuits, mainly used for structural testing of board 
and system level connectivity. The standard does not 
provide for the measurement of PCB6 trace or component 
parameters, such as resistance, capacity, inductivity, 
oscillator frequency, power consumption, etc. IEEE-
Std.1149.4 has been developed to cope with analog and 
mixed signal test applications at board level. In addition 
to IEEE-1149.1 resources, components compliant to 
IEEE-1149.4 provide special test resources for the 
injection of current to and the measurement of voltage 
levels at circuit nodes. [3] [4] 

Especially in the telecommunications and the networking 
industry, high-speed interconnects running at a data rate 
of multiple Gigahertz are common today. Endpoints on 
such interconnects are typically AC coupled. IEEE-
1149.1 does not provide for the test of such signal paths. 
Also, IEEE-1149.1 has limitations in the test of 
differential lines. To cope with such limitations, the new 
IEEE-Std. 1149.6 has been developed. [5] [6] 

 

2. Boundary Scan Interconnect Test 

2.1 Board level interconnect test 
Typically, today’s electronic designs include one or more 
devices that provide testability features compliant to 
IEEE-1149.1. If the board designer provided the means to 
access the Test Access Port of such devices, ideally by 
creating a Boundary Scan chain (Figure 1), then the 
interconnections between Boundary Scan I/O’s can be 
verified. The goal of such an Interconnect Test is to detect 
and - if possible - diagnose structural faults such as stuck-
at1/0 or shorted nets and open pins. 

Interconnect Tests are executed while the Boundary Scan 
devices involved are in EXTEST7 mode. The test 
sequence includes preloading of Boundary Scan cells 
(input and output cells as well as control cells) and 
subsequent capturing of net logic levels in input cells. 
The IEEE-1149.1 (Boundary Scan) test resources 

                                                 
6 PCB: Printed Circuit Board 
7 EXTEST: pin permission Boundary Scan instruction 
defined in IEEE-1149.1-2001, section 8.8 



available on a net determine the degree of testability for 
structural faults on that net. Figure 2 provides a few 
examples of nets with different amounts of Boundary 
Scan test resources. 

 
Figure 1: Board level scan chain; ring configuration 
 

Figure 2-A represents a net that includes a pin with a 
Boundary Scan output cell only. The output cannot be 
deactivated. Furthermore, there is no Boundary Scan 
input cell available. Thus, open or stuck-at faults on such 
a net cannot be detected via Boundary Scan. To be able to 
test the net for such faults, additional resources (at least 
one Boundary Scan input cell) need to be provided, for 
example by means of external test modules connected to 
the net under test through a test point or peripheral 
connector pin. A short between a net with an output cell 
only and another net can only be detected if the other net 
provides at least a Boundary Scan input cell.  

In Figure 2-B the only Boundary Scan pin available 
provides an input cell. It does not have any output 
capability. On a net like this the testability via Boundary 
Scan is limited to the detection of a stuck-at fault 
(partially) or an open, if the net provides a pull resistor. 
For example, if the net has a pull down resistor, a 
Boundary Scan test can detect a stuck-at high fault, but 
not a stuck-at-low fault. An open can only be detected in 
this case, if the open pin features internal pull-up 
circuitry. For such a test, the input cell would be 
preloaded with logic value High (Shift-DR state). When 
the TAP Controller8 is passing through the Capture-DR 
state, the input cell should capture a Low (due to the pull-
down resistor on the net). If the cell does not capture a 
Low, the pin seems open or stuck-at high, or the pull-
down resistor may be missing. To detect a short between 
the net shown in Figure 2-B and another net, this other 
net must provide at least a Boundary Scan output cell. 

                                                 
8 TAP Controller: Test Access Port Controller (state 
machine), defined in IEEE-1149.1-2001, section 6 

 
Figure 2: Nets with various levels of testability 



The net shown in Figure 2-C includes one Boundary Scan 
output cell and one Boundary Scan input cell.  

Figure 2-D represents the connection between a Boundary 
Scan output cell that can be deactivated and a Boundary 
Scan input cell. 

In Figure 2-E, the Boundary Scan output cell can be 
deactivated and is self-monitoring. The other Boundary 
Scan cell in this net is an input cell. 

The net in Figure 2-F includes two bi-directional 
Boundary Scan pins, each with individual cells for 
control, input data, and output data. 

The Boundary Scan resources available in those nets 
pictured in Figures 2-C through 2-F allow the detection of 
opens, stuck-at faults and shorts, however, opens cannot 
be localized down to the pin level (either of the two pins 
could be open). If the net shown in Figure 2-F would be 
shorted to another net and at the same time one of the two 
Boundary Scan pins in net 2-F would be open, that open 
pin could be localized, though. 

Figure 2-G shows a net with three bi-directional 
Boundary Scan pins with three cells each (Control, Input, 
and Output). Such a net would be fully testable. 
Furthermore, if only one pin is open, that pin could be 
localized. 

In Figure 2-H, some of the Boundary Scan pins use 
shared control cells. Shared control cells limit the control 
over the involved Boundary Scan pins, since those pins 
can only be activated or deactivated together. E.g., in this 
example the two Boundary Scan output pins on the upper 
left side of the circuitry share one control cell. The two 
bi-directional Boundary Scan pins on the right also share 
a control cell. An output only Boundary Scan pin on a 
third device is connected to one of the bi-directional pins. 
Since that output pin cannot be deactivated, the bi-
directional pin it is connected to must be deactivated so 
that no driver contention is caused on the net. By keeping 
one of the bi-directional pins deactivated, the other pin 
sharing the same control cell remains deactivated at all 
times as well. Thus, the two bi-directional pins can be 
used as inputs only, which results in a reduced 
diagnosability. Opens, shorts and stuck-at faults can be 
detected on both nets, but opens cannot be localized. 

The discussion above presumed that there are no active 
non-Boundary Scan pins included in the nets shown in 
figure 2. In reality, that is usually not the case though. 
Rather, pins from passive components, such as resistors, 
capacitors, connectors, etc., or analog, mixed-signal, and 
digital components may be connected to the same net. To 
safely test such nets using Boundary Scan the ATPG tools 
need an understanding of these pin functionalities and, 
specifically, if and how active non-Boundary Scan pins 
can be deactivated [7]. Ideally, non-Boundary Scan pin 
functionality is described in device libraries, so that it is 

easily available for automated test generation. If the 
ATPG tools are able to analyze the pin functionality, that 
information can be used to automatically generate “safe 
test vectors” – test pattern include automatically set 
constraints ensuring the avoidance of bus contentions in 
case there are no faults on the interconnections. 
Analyzing the non-Boundary Scan pin functionality also 
allows the ATPG tool to generate test programs with the 
best possible coverage at the smallest possible number of 
test vectors. 

In Figure 3, below, two bidirectional buffers and a 
memory device share the same data bus. Any Boundary 
Scan tests need to be generated so that only one of these 
devices drives the bus signals at any time (“safe test”). In 
this example, the direction of the two buffers should be 
set so that they don’t drive against each other and the 
memory device should be disabled. Both buffer devices 
should be activated; this way the signal path from one 
Boundary Scan component to the other can be tested as 
part of the interconnect test and open faults on the buffer 
devices and shorts on the bus structure shared by the 
buffers and the memory can be detected. Alternatively, 
the two buffers could be disabled during interconnect test 
and the circuitry could be tested as part of a cluster test. 
Open faults on the memory pins would be tested as part 
of a memory cluster test. 

 
Figure 3: Bus structure 

 

2.2 System level interconnect test 
Board level test is often followed by system assembly and 
test. Main boards and daughter cards may be joined and 
modules may be plugged into a system backplane. It is 
beneficial to test such system level interconnects before 
attempting functional tests. Even when the system is 
dispatched in the field, remote and on-site system level 
test and In-System Configuration applications can reduce 
maintenance cost dramatically. Boundary Scan is a very 
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good candidate for such system level applications. To 
apply test pattern at a system level, the Boundary Scan 
infrastructure needs to be extended, though. Test vectors 
need to be routed from a controlling device (the Boundary 
Scan Controller) to individual devices or boards within 
the system. Scan paths may be split to group certain 
components in separate chains. Multidrop scan chain 
configurations for system level test require addressable 
chain routing devices [8].  

A multidrop chain design at system level allows sharing 
one backplane IEEE-1149.1 test bus between all boards 
plugged into the backplane. A simple scan chain design, 
connecting all board scan chains in series at system level, 
would require all slots to be equipped; otherwise the scan 
chain would be broken. An addressable test bus interface 
on each individual card within the system provides for 
various levels of test, such as device level test, board level 
test, as well as system level interconnect test.  

 

2.3 Limitations of IEEE-1149.1 interconnect test 
A Boundary Scan Interconnect Test can only test 
connections (including transparent components) between 
Boundary Scan I/O pins. Such an interconnect test is 
running at relative slow speed and thus can be considered 
a static test. For example, with a Boundary Scan chain 
that is 10,000 cells long and a TCK frequency of 10MHz, 
the parallel test pattern throughput rate is approximately 
1kHz (the rate at which the Boundary Scan I/O’s can 
change their state during the test). That means that an 
IEEE-1149.1 interconnect test cannot detect connectivity 
problems on high speed interconnects that occur only at 
functional speed (e.g. cold solder joints that provide just 
enough connectivity for static tests, but cause functional 
faults at high speed because of a higher resistance). 

Another limitation of Boundary Scan interconnect tests is 
that non-Boundary Scan pins (pins without IEEE 1149.x 
test resources) typically are not included in such tests. 
Exceptions are transparent devices such as buffers and 
transceivers, as well as serial resistors. To include other 
non-Boundary Scan pins in a Boundary Scan test, so 
called cluster tests would have to be executed. 

 

3. Cluster Testing 
Circuitry that is not directly testable via Boundary Scan 
we can consider a cluster. For example, combinatorial 
logic between Boundary Scan I/O pins can be called a 
logic cluster (see Figure 4). Power supply and distribution 
circuitry on a PCB is considered an analog cluster. 
Discrete (as opposed to embedded) memory devices, with 
or without external glue logic, are considered Memory 
Clusters. So called Interface Clusters comprise circuitry 

that connects the board to the outside world or provides 
visual or audio interfaces, respectively.  

Often times, the input and output signals for such clusters, 
which may involve one or more individual components, 
are connected to Boundary Scan I/O pins. Utilizing those 
Boundary Scan I/O pins to stimulate the cluster inputs 
and to observe the cluster outputs, it is often times 
possible to create a basic functional test for the cluster. 
Since Boundary Scan test vectors are applied at a fairly 
slow rate, depending on scan chain length and TCK 
frequency, such cluster tests are usually not running at the 
same speed as the circuitry would be running at in 
functional mode. 

 
Figure 4: Example of a Logic Cluster 
 

3.1 Logic and Interface Cluster testing 
A Logic Cluster test verifies the connections from 
Boundary Scan pins to Cluster inputs and outputs and 
connections within the cluster as well as the general 
cluster functionality. Fault isolation is limited due to 
missing Boundary Scan access to all cluster-internal 
nodes.  

In cluster testing it is as important to avoid bus contention 
as it is in any other kind of Boundary Scan test. Figure 4 
shows a logic cluster where the cluster inputs and outputs 
are connected to the same Boundary Scan device. The 
logic cluster includes four 2-input NAND gates and four 
non-inverting signal buffers. Two of those buffers drive 
the same net. To avoid bus contentions, possibly resulting 
in damage of one of the drivers, only one of these two 
buffers may be enabled at any time. When creating test 
pattern for this circuitry either the developer or the 
automated test generation tool must find such nets that 
include multiple drivers and ensure that only one driver is 
active at any time.  



An Interface Cluster test attempts to verify the interface 
connectivity and basic functionality. Since interface 
circuitry typically includes peripheral connectors, it is 
desirable to provide external test resources to those 
connectors to improve the testability and include the 
connectors in the test coverage. 

Cases exist where generating cluster test with ATPG9 
tools is either not possible or not efficient. Here a high-
level programming language is helpful, allowing the 
design engineer or the test engineer to manually write test 
source code at an abstract level while the Boundary Scan 
software tools handle the test resources at a low level 
(e.g. control of the TAP state machines, mapping of the 
Boundary Scan cells to be set, etc.). Such a programming 
language that allows the design or test engineer to 
concentrate on the test task itself, rather than on the 
underlying Boundary Scan protocols, can reduce test 
development time dramatically. Combining the flexibility 
a programming language provides with the insight and 
control graphical debugging tools can provide, Boundary 
Scan applications can be taken to the next level, up from 
just automatically generated interconnect and cluster tests 
to extended Boundary Scan applications that may even 
turn into integrated Boundary Scan and Functional Tests. 

For an example, including test program sequence and 
source code snippets, please refer to Appendix A. 

 

3.2 Memory Cluster testing 
The purpose of a memory cluster test at board level is to 
determine that all memory pins are soldered properly, the 
memory is functioning, and there are no shorts, open, or 
stuck-at faults along the signal path from the controlling 
device – the Boundary Scan component(s) used to apply 
the test pattern – to the memory device. The memory 
cluster may or may not include glue logic and/or buffer 
circuitry. Figure 5 shows an example for a SRAM10 
memory cluster that includes buffer components on the 
address bus and data bus. 

To test the connections between the Boundary Scan 
components (U300, and U603 in Figure 5) and the SRAM 
(U500 in Figure 5), a sequence of test pattern is written to 
the memory. When the respective memory locations are 
read afterwards, the same pattern should be returned by 
the memory. The test pattern must include control for the 
buffer devices also (U600, U601, and U604 in Figure 5). 
In the example in Figure 5 the memory device has 18 
address lines and 16 data lines. 

Memory Cluster tests usually are generated by ATPG 
tools. However, a functional description for the memory 
has to be provided to the ATPG tool. To simplify test 
                                                 
9 ATPG: Automated Test Pattern Generation 
10 SRAM: Static Random Access Memory 

development and reduce the development time, functional 
device descriptions (see Appendix B for an example) can 
be provided in device libraries. Boundary Scan software 
can rely on models to provide the necessary information 
for write and read access as well as memory setup 
sequences. Similar, functional descriptions for buffer and 
transceiver allow the software to automatically generate 
control pattern for such devices. All the ATPG tool has to 
do then is to match up the memory pins with the proper 
Boundary Scan I/O pins to apply the test pattern and to 
generate the test pattern itself. Latter typically depends on 
the number of address and data lines as well as on the 
type of memory. The goal is not to test the complete 
memory storage space for proper functioning, but rather 
to determine the structural integrity of the connections 
between the controlling Boundary Scan device and the 
memory. Here, as with any other Boundary Scan test 
application, it is important that the ATPG tool generates 
safe test vectors, that don't cause harm to the Unit Under 
Test. 

 
 
Figure 5: Example of a Memory Cluster 
 
To test for opens and shorts, a test sequence such as the 
one presented in Figure 6 can be applied. 

For an example of a SRAM memory cluster test sequence 
see Appendix C. 

For a standard asynchronous SRAM device the write and 
read cycles are very simple; only three control signals are 
required (Chip Enable, Write Enable, and Output Enable). 
In addition to the control signals on the memory, the 
buffer devices need to be controlled to enable access to 
the SRAM from the Boundary Scan component (see 
Figure 5). The buffer devices themselves become part of 
the memory cluster; if the Boundary Scan software 
detects a fault on an address or data line, the fault location 
can be on the Boundary Scan pin, one of the buffer pins 
(input or output), or the SRAM pin. Of course, there 
could even be multiple faults on this signal path. A fault 
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on the signal path can be detected, but if the connections 
between the Boundary Scan device and the memory 
device are not direct but rather go through buffers or glue 
logic, diagnosability is limited. Only if there are several 
Boundary Scan devices available on the address and data 
bus, the Boundary Scan pins themselves may already be 
verified as part of the Interconnect Test.  

The example given here represents a very simple memory 
cluster. Developments in memory architecture in the past 
decade introduced a wide variety of new types of 
memories with often times rather complex control cycles 
required to access a memory device (to write and read 
data). In the following paragraphs we will discuss some 
of the most common memory types. 

3.2.1 Types of memory devices 
Memory devices can be classified as either volatile (e.g. 
SRAM, DRAM11, FIFO12) or non-volatile memory (e.g. 
EPROM, FLASH EEPROM).  

RAM (Random Access Memory) can be classified as 
static or dynamic memory. A Static RAM (SRAM) cell 
stores data in a flip-flop. The device retains the memory 
as long as power is supplied (hence the term static). A 
Dynamic RAM (DRAM) stores data as an electrical 
charge, which gradually discharges, and thus requires 
periodical refresh/ access to retain its data (hence the term 
dynamic). 

Memories are also differentiated by the way they are 
accessed: synchronous vs. asynchronous. An 
asynchronous memory does not depend on a clock to 
write or read data, whereas synchronous memories are 
synchronized with an external clock signal (with the 
rising and falling clock edges, to be specific). 

SRAM devices, for example, are available as both 
asynchronous and synchronous memory. Synchronous 
SRAM devices (SSRAM) are offered in a wide variety of 
interface implementations. All have input registers which 
latch the address, data, and control signals at the rising 
edge of the clock signal. Some also feature an output 
register for data. Depending on the implementation, we 
differentiate between Single Data Rate, Double Data 
Rate, and other memory interfaces. 

With Single Data Rate (SDR) SSRAM, one data word is 
transferred between memory and controller per clock 
cycle (on the rising clock edge). Such SDR SSRAM come 
in different flavors: Pipelined, Flowthrough, Burst, 
Network. Pipelined SDR SSRAM offer both input 
registers as well as an output register, latched at the rising 
clock edge. This means that a write access to a pipelined 
SDR SSRAM takes one clock cycle, while a read access 
takes two clock cycles. Flowthrough SDR SSRAM, on  
                                                 
11 DRAM: Dynamic Random Access Memory 
12 FIFO: First-In/First-Out 

Stuck-at test on data lines

1) write 0x0000 to address 0x00000
2) write 0xFFFF to address 0x3FFFF
3) read address 0x00000, expect 0x0000 on data lines
4) read address 0x3FFFF, expect 0xFFFF on data lines

short test 1
(short between address and data lines)

  1) write 0xFFFF to address 0x00000
  2) read address 0x00000, expect 0xFFFF on data lines
  3) write 0x0000 to address 0x00001
  4) shift address by one bit (walking-one pattern), write 0x0000 to 
      address, repeat for a total of 17 times
  5) read address 0x00001, expect 0x0000 on data lines
  6) shift address by one bit (walking-one pattern), read address,   
      expect 0x0000 on data lines, repeat for a total of 17 times
  7) write 0x0000 to address 0x3FFFF
  8) read address 0x3FFFF, expect 0x0000 on data lines
  9) write 0xFFFF to address 0x3FFFE
10) rotate address by one bit (walking-zero pattern), write 0xFFFF 
      to address, repeat for a total of 17 times
11) read address 0x3FFFE, expect 0xFFFF on data lines
12) shift address by one bit (walking-zero pattern), read address 
      expect 0xFFFF on data lines, repeat for a total of 17 times

short test 2
(short between data lines)

  1) write 0x0001 to address 0x00000
  2) read address 0x00000, expect 0x0001 on data lines
  3) shift data by one bit (walking-one pattern), write again to 
      address 0x00000, read address 0x00000, expect walking-one 
      pattern on data lines, repeat for a total of 15 times
  4) write 0xFFFE to address 0x3FFFF
  5) read address 0x3FFFF, expect 0xFFFE on data lines
  6) rotate data by one bit (walking-zero pattern), write again to 
      address 0x3FFFF, read address 0x3FFFF, expect walking-zero 
      pattern on data lines,, repeat for a total of 15 times

stuck-at and short test on address lines

  1) write 0x0000 to address 0x00000
  2) write 0x0001 to address 0x00001
  3) shift address by one bit (walking-one pattern), increment data 
      by 1, write data to address, repeat for a total of 17 times
  4) read address 0x00000, expect 0x0000 on data lines
  5) write 0x0000 to address 0x00000
  6) read address 0x00001, expect 0x0001 on data lines
  7) shift address by one bit (walking-one pattern), read address, 
      expect data read on data lines incremented by 1, repeat for a 
      total of 17 times
  8) write 0x0000 to address 0x3FFFF
  9) write 0x0001 to address 0x3FFFE
10) rotate address by one bit (walking-zero pattern), increment data 
      by 1, write data to address, repeat for a total of 17 times
11) read address 0x3FFFF, expect 0x0000 on data lines
12) write 0x0000 to address 0x3FFFF
13) read address 0x3FFFE, expect 0x0001 on data lines
14) rotate address by one bit (walking-zero pattern), read address, 
      expect data read on data lines incremented by 1, repeat for a 
      total of 17 times

 

Figure 6: Example for RAM Cluster test pattern 



the other hand, do not have an output register, thus both 
write and read access are one clock cycle long. Burst and 
Network SDR SSRAM provide built-in circuitry to 
enhance the data throughput, e.g. by reading multiple 
words from sequential addresses or by interleaving write 
and read accesses. 

Double Data Rate (DDR) SSRAM can transfer 2 words 
per clock cycle, one on the rising edge and one on the 
falling edge of the clock signal. Thus, the data lines on 
such devices operate on double the clock frequency. A 
variant of DDR SSRAM, offering two independent ports 
for read and write access, is called QDR SSRAM (Quad 
Data Rate SSRAM) [9]. Each of the two ports on QDR 
SSRAM transfers data at a rate of 2 words per clock 
cycle, thus up to 2 words can be written to the memory 
and up to 2 words can be read from the memory within 
one clock cycle. 

SDRAM memories are also available with various 
interface implementations (e.g. DDR-SDRAM, DDR2-
SDRAM, RL-DRAM, RDRAM – a.k.a. Rambus – and 
others).  

FIFO memory devices feature a variety of interface 
implementations as well, for example Clocked FIFO, 
Dual Port FIFO, and Quad Port FIFO, just to name a few. 

Common to all of these memory interfaces is that they are 
much more complex than a standard SRAM interface. 
There are more than three control signals to be handled 
and often times a clock signal is involved. To be able to 
test the connectivity between a controlling device and the 
memory device within the scope of a memory cluster test 
utilizing IEEE-1149.1 resources, full Boundary Scan 
access to all required control signals as well as to the 
address and data lines is required [10]. However, 
especially the clock signal used to synchronize memory 
access cycles may not be accessible via Boundary Scan, 
but rather, it may be generated by an oscillator. If control 
over that clock signal cannot be obtained, the memory 
cluster test cannot be executed successfully. 

3.2.2 Limitations on testability due to glue logic 
and clock circuitry 
As long as all pins on a memory device are connected 
directly or indirectly (e.g. through buffer) to Boundary 
Scan I/O pins, a cluster test can be created for the 
memory. However, if the clock signal on a synchronous 
memory device (e.g. a SDRAM) is not controllable via 
Boundary Scan, the test pattern on address and data lines 
as well as the memory control pins cannot be 
synchronized to the clock and a test cannot be executed 
successfully. To take control over a clock signal coming 
from an oscillator for example, one could add a gating 
circuitry that is rerouting the memory clock signal to a 
Boundary Scan I/O pin whenever the cluster test is 

running. Figure 7 illustrates an example for such a clock 
gating circuit.  

Here, the oscillator is enabled through the pull down 
resistor Roe. By providing additional control on the 
oscillator's /OE input pin (e.g from an otherwise unused 
Boundary Scan I/O pin on a PLD/FPGA, or from an 
external tester resource), the oscillator can be deactivated 
and an alternative clock source can be provided. In above 
diagram, an AND gate is used to gate the two clock 
sources (on-board oscillator and alternative clock source). 
While one of the two clock sources is active, the other 
input of the AND gate is kept at logic High via a pull-up 
resistor. 

The more complex a memory interface is, the more 
Boundary Scan shift cycles are needed to write one data 
word to the memory or to read a data word from the 
memory. This results in increased test execution time.  

In addition to taking control over the clock signal for 
synchronous memories, a memory cluster test can only be 
executed successfully, if any glue logic that may exist to 
decode bank select, chip select, and other memory control 
signals is Boundary Scan accessible. The same is true for 
any bus switching circuitry that may be used to multiplex 
address and data lines. As mentioned before, the 
controlling Boundary Scan component(s) needs full 
access to the memory device (directly or indirectly) to be 
able to emulate write and read access cycles. 

We mentioned earlier in this paper that dynamic RAM 
require periodical refresh of the data, otherwise the 
memory contents will be lost. The required refresh rate is 
so high that explicit Boundary Scan access cycles are too 
slow to refresh the data and at the same time run a 
memory cluster test. Typically this is not a problem 
though, since most modern dynamic RAM devices feature 
a self refresh or auto refresh algorithm (before applying 
the test pattern, the memory device can be set up to 
refresh itself periodically).  

Figure 7: Clock gating to obtain BScan control



3.3 In-System Configuration applications 

3.3.1 PLD and FPGA 
Most modern programmable logic devices (PLD) and 
FPGA devices provide an IEEE-1149.1 test bus interface 
and support in-system configuration through that port. 
Typically, programming control is built in to the device 
and the control sequence and programming data is 
provided by means of various file types, such as SVF 
files, JAM files, STAPL (JEDEC-Std. 71) files [11], or 
IEEE 1532 files [12]. (As a note regarding location of 
PLD in the scan chain: If a PLD blocks data from 
scanning out of its TDO during in-system configuration, 
keep this device in a separate scan chain or put it at the 
end of the scan chain, with no other BScan components 
between this device and TDO of the board, or provide the 
means to temporarily isolate the device for ISP.) Note that 
FPGA devices typically feature configuration control pins 
that have to be externally driven to a certain logic level to 
make the component IEEE-1149.1 compliant. The BSDL 
file and data sheet for the component provides respective 
information. Modern FPGA often feature 
programmability of I/O pin functionality and voltage 
level. Thus, one has to decide whether to program the 
component before test or run Boundary Scan tests first 
(before device configuration).  

3.3.2 EEPROM 
FLASH devices and other EEPROM (such as serial 
EEPROM based on I2C or SPI protocol) can be 
programmed via Boundary Scan devices if access is 
available to all memory pins required for programming 
(either directly or indirectly). To reduce programming 
time, a short scan chain and high TCK frequency are 
required. Separate the BScan device used to program 
EEPROM from other BScan devices (put it in a separate 
scan chain) if those other devices support only a much 
slower TCK frequency. Also, try to control all EEPROM 
pins from the same BScan component (so that all other 
BScan components can be kept in HIGHZ, CLAMP, or 
BYPASS mode). Finally, programming speed can be 
increased if frequently exercised control pins (such as 
/WE) are accessed with parallel I/O resources rather than 
Boundary Scan. Precondition for that is that the Boundary 
Scan pin in that net can be disabled and that access to the 
control pin is available via connector (preferably) or test 
pad. Other techniques to speed up FLASH programming 
via Boundary Scan are in development or are already 
available as proprietary implementations.  

Testing connection to a FLASH device by means of a 
memory cluster test such as described in 3.2 above would 
require multiple FLASH erase cycles, which typically is 
impractical because of the length of time that would be 
required for such a test. From a test engineer’s standpoint 
it would be desirable to have IEEE-P1581 (see 

section 4.3) implemented in FLASH devices for 
connectivity test. Even better would be an implementation 
of IEEE-1149.1 and IEEE-1532 resources. 

 

4. Alternatives to Memory Cluster test 
There are alternatives to memory cluster tests based on 
Boundary Scan I/O pins surrounding the cluster.  

4.1. Memories with IEEE 1149.1 test resources 
Some vendors now offer memory devices with IEEE-
1149.1 resources built in. Sometimes, these devices are 
not fully compliant to the IEEE 1149.1 standard for 
example by not supporting EXTEST capability. Such 
devices typically do support a test mode where the output 
drivers are deactivated and all I/O pins (address, data, and 
most control signals) provide capture capability. This – 
even though limited – test capability allows at least to 
include such memory devices in an automatically 
generated interconnect test. 

Examples for memory devices featuring IEEE 1149.1 test 
resources include DDR, QDR, RLDRAM, and FIFO 
memory from vendors such as CYPRESS, 
GSI Technology, IDT, INFINEON, ISSI, MICRON, 
NEC, SAMSUNG, SONY, and others. [13,14]  

4.2. Memory BIST 

Memory embedded into Processors, SOC’s13, ASIC’s14, 
DSP’s15, and other devices often times can be tested with 
Built-In Self Test (BIST) resources implemented into 
these devices. In case of discrete memory at board or 
system level, a connectivity test between a memory 
device and its controlling counterpart (e.g. a processor) 
could be run at-speed if the controlling device has test 
resources embedded that can be used to apply at-speed 
test vectors that exercise the memory circuitry. 

4.3. IEEE P1581 
Currently in the balloting process, this standard [15] has 
been developed to define a test strategy for complex 
memory devices which do not support IEEE 1149.1. This 
standard describes a means to verify the memory I/O pin 
connectivity (address, data, and control signals). The 
memory cell structure is completely bypassed; a 
combinational test circuitry implemented into the memory 
device is used instead during test mode to link input and 
output signals. A controlling device (typically an IEEE 
1149.1 compliant component connected to the memory 
device) applies a stimulus to the inputs and observes the 
outputs of the memory’s test circuitry.   

                                                 
13 SOC: System On Chip 
14 ASIC: Application Specific Integrated Circuit 
15 DSP: Digital Signal Processor 



5. Outlook for Boundary Scan 
The authors of this paper expect that in the coming years 
even more complex memories will feature IEEE 1149.1 
or IEEE 1581 test resources.  

For advanced applications of Boundary Scan, 
IEEE 1149.4 and IEEE 1149.6 will most likely become 
available in ASIC components first, since these types of 
Boundary Scan require a more sophisticated design of the 
test resources. 

Furthermore, BIST for both embedded logic and memory 
circuitry based on IEEE P1500 is likely to become 
established quickly for SOC level testing once the 
standard is approved. 

Extending the reach of Boundary Scan, integrations with 
other test methodologies such as Flying Probe, 
Automated Optical Inspection, and Functional Test 
improve cluster testing and achievable fault coverage.  

 

6. Conclusions 
Today, IEEE 1149.1 is well established and widely used. 
Still, there are many areas on even the latest board 
designs that require cluster testing because devices have 
no Boundary Scan test resources implemented. Memory 
devices are continuously becoming more complex and 
provide faster speeds and more storage capacity [16]. The 
bad news for test engineers is that logic cluster and 
memory cluster testing becomes more complicated or 
impossible on more complex UUT’s. Design For 
Testability is more important than ever. The good news is 
that SOC’s include more and more previously discrete 
circuitry, thus removing clusters from the board level, 
embedding it into the device; as a result BIST becomes 
more important.  
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Appendix 
 
 

A.   Logic Cluster test example 

LCD display cluster 

 
 

The advantage of Boundary Scan tools that feature a high-level programming language in addition to ATPG tools is that 
they provide a much better flexibility and support test applications that could not be covered with just automatically 
generated test programs. A programming language allows for the development of test programs with branches and 
conditional loops, vs. linear test pattern generated with ATPG tools. Examples for applications where a programming 
language is very beneficial include sequential logic and circuitry for user interfaces (such as LED and LCD displays, 
keyboards, speakers, etc.), where a Boundary Scan test of such circuitry borders on functional test applications.  

A test for the LCD display cluster pictured above can easily be created manually in a high-level programming language. If 
combined with Automated Optical Inspection tools, the test pattern written out to the LCD could automatically be visually 
verified. Below is an example of a test flow for such an LCD cluster, with manually created test program snippets in the 
CASLAN16 language. 
   

                                                 
16 CASLAN: CASCON Language, proprietary Boundary Scan programming language by GOEPEL electronic 



 



B.  Device model description for a SRAM device
 
 
Format..............: BSDM 
Version.............: 4.0 
Program.............: 'CASCON DEVICE LIBRARY' 
Remark......:  
" 
SRAM 256KX16 
KM6164000_TSOP44 (SAM) 
  
  
19-04-99 
TK / GOEPEL ELECTRONIC 
BR 
V 
" 
 
Component name...................: KM6164000_TSOP44 (NonBSC) 
Type................: 'Ram' 
-- Port table 
-- Name Type 
Port..: A4                  'Normal'     'Input'                              
Port..: A3                  'Normal'     'Input'                              
Port..: A2                  'Normal'     'Input'                              
Port..: A1                  'Normal'     'Input'                              
Port..: A0                  'Normal'     'Input'                              
Port..: CS                  'Normal'     'Input'                              
Port..: IO1                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO2                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO3                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO4                 'Normal'     'Bidirectional' 'Output2'            
Port..: VCC1                'Normal'     'Linkage'       'SUPPLY'             
Port..: VSS1                'Normal'     'Linkage'       'GROUND'             
Port..: IO5                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO6                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO7                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO8                 'Normal'     'Bidirectional' 'Output2'            
Port..: WE                  'Normal'     'Input'                              
Port..: A17                 'Normal'     'Input'                              
Port..: A16                 'Normal'     'Input'                              
Port..: A15                 'Normal'     'Input'                              
Port..: A14                 'Normal'     'Input'                              
Port..: A13                 'Normal'     'Input'                              
Port..: A12                 'Normal'     'Input'                              
Port..: A11                 'Normal'     'Input'                              
Port..: A10                 'Normal'     'Input'                              
Port..: A9                  'Normal'     'Input'                              
Port..: A8                  'Normal'     'Input'                              
Port..: NC2                 'Normal'     'Unknown'                            
Port..: IO9                 'Normal'     'Bidirectional' 'Output2'            
Port..: IO10                'Normal'     'Bidirectional' 'Output2'            
Port..: IO11                'Normal'     'Bidirectional' 'Output2'            
Port..: IO12                'Normal'     'Bidirectional' 'Output2'            
Port..: VCC2                'Normal'     'Linkage'       'SUPPLY'             
Port..: VSS2                'Normal'     'Linkage'       'GROUND'             
Port..: IO13                'Normal'     'Bidirectional' 'Output2'            
Port..: IO14                'Normal'     'Bidirectional' 'Output2'            
Port..: IO15                'Normal'     'Bidirectional' 'Output2'            
Port..: IO16                'Normal'     'Bidirectional' 'Output2'            
Port..: LB                  'Normal'     'Input'                              
Port..: UB                  'Normal'     'Input'                              
Port..: OE                  'Normal'     'Input'                              
Port..: A7                  'Normal'     'Input'                              
Port..: A6                  'Normal'     'Input'                              
Port..: A5                  'Normal'     'Input'                              
Package.............:PackageBegin 'Package' 
 
Pins..:Packagebegin 
  A4                  1, 
  A3                  2, 
  A2                  3, 
  A1                  4, 
  A0                  5, 



  CS                  6, 
  IO1                 7, 
  IO2                 8, 
  IO3                 9, 
  IO4                 10, 
  VCC1                11, 
  VSS1                12, 
  IO5                 13, 
  IO6                 14, 
  IO7                 15, 
  IO8                 16, 
  WE                  17, 
  A17                 18, 
  A16                 19, 
  A15                 20, 
  A14                 21, 
  A13                 22, 
  A12                 23, 
  A11                 24, 
  A10                 25, 
  A9                  26, 
  A8                  27, 
  NC2                 28, 
  IO9                 29, 
  IO10                30, 
  IO11                31, 
  IO12                32, 
  VCC2                33, 
  VSS2                34, 
  IO13                35, 
  IO14                36, 
  IO15                37, 
  IO16                38, 
  LB                  39, 
  UB                  40, 
  OE                  41, 
  A7                  42, 
  A6                  43, 
  A5                  44 
 Packageend 
 
Description...:Descriptionbegin 
(FUNCTION 
 (BUS 
  (ENABLECONDITION (LOW OE) 
                   (LOW CS) 
                   (LOW LB) 
                   (HIGH WE)  
  ) 
  (PIN IO1 := ACTIVE) 
  (PIN IO2 := ACTIVE) 
  (PIN IO3 := ACTIVE) 
  (PIN IO4 := ACTIVE) 
  (PIN IO5 := ACTIVE) 
  (PIN IO6 := ACTIVE) 
  (PIN IO7 := ACTIVE) 
  (PIN IO8 := ACTIVE) 
 ) 
 (BUS 
  (ENABLECONDITION (LOW OE) 
                   (LOW CS) 
                   (LOW UB) 
                   (HIGH WE)  
  ) 
  (PIN IO9 := ACTIVE) 
  (PIN IO10 := ACTIVE) 
  (PIN IO11 := ACTIVE) 
  (PIN IO12 := ACTIVE) 
  (PIN IO13 := ACTIVE) 
  (PIN IO14 := ACTIVE) 
  (PIN IO15 := ACTIVE) 
  (PIN IO16 := ACTIVE) 
 ) 
 (RAM 
   (Address 



     (Pin A0) 
     (Pin A1) 
     (Pin A2) 
     (Pin A3) 
     (Pin A4) 
     (Pin A5) 
     (Pin A6) 
     (Pin A7) 
     (Pin A8) 
     (Pin A9) 
     (Pin A10) 
     (Pin A11) 
     (Pin A12) 
     (Pin A13) 
     (Pin A14) 
     (Pin A15) 
     (Pin A16) 
     (Pin A17) 
  ) 
  (Data 
    (PIN IO1) 
    (PIN IO2) 
    (PIN IO3) 
    (PIN IO4) 
    (PIN IO5) 
    (PIN IO6) 
    (PIN IO7) 
    (PIN IO8) 
    (PIN IO9) 
    (PIN IO10) 
    (PIN IO11) 
    (PIN IO12) 
    (PIN IO13) 
    (PIN IO14) 
    (PIN IO15) 
    (PIN IO16) 
   ) 
   (Control 
      (PIN CS) 
      (PIN LB) 
      (PIN UB) 
      (PIN WE) 
      (PIN OE) 
   ) 
   (Inactive 
     D, Z, HHHHH 
   ) 
   (Write 
     (Step D, D, LLLHH) 
     (Step D, D, LLLLH) 
     (Step D, D, LLLHH) 
   ) 
   (Read 
     (Step D, D HHHHHHHHHHHHHHHH, LLLHH) 
     (Step D, Z, LLLHH) 
     (Step D, E, LLLHL) 
     (Step D, Z, LLLHH) 
  ) 
 ) 
) Descriptionend 



C. Test flow for a SRAM Cluster test
 

 
 

Below is a test flow for an automatically generated memory cluster test for the SRAM memory cluster 
pictured in the diagram above. See also Figure 6 in the main part of this paper. The ATPG tool needs to 
generate safe test pattern, making sure that no bus contentions occur (neither within this memory cluster 
nor throughout the rest of the circuitry on the Unit Under Test). 
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Load all Bscan devices with SAMPLE

Begin

Preload Bscan registers

Set safe conditions for UUT circuitry

Stuck-At test of DATA lines

Load all Bscan devices with EXTEST

Short test between DATA lines

Short test between DATA and ADDRESS 
lines

All tests passed?

Set ExitCode to 0 (PASS condition) Set ExitCode to 256 (burst FAIL condition)

End
STOP 0; STOP 256;

yes no

Stuck-At and Short test of ADDRESS lines

 


