

Leveraging Boundary Scan resources for comprehensive cluster testing

Heiko Ehrenberg and Norbert Muench

GOEPEL Electronics LLC

9600 Great Hills Trail, 150W, Austin, Texas 78759 USA

Abstract
Board level Boundary Scan testing as defined in IEEE-
1149.1 is well established in the electronics industry. To
achieve the best possible test coverage and testability for
a specific design, a thorough DfT1 Analysis is required
though. DfT for Boundary Scan does not just include
routing the scan chain and taking care of compliance pins
on Boundary Scan devices. It also concerns non-
Boundary Scan circuitry such as logic or memory
clusters. Modern memory devices, especially synchronous
memories, become more complex and faster with each
generation. This paper suggests ways to ensure that those
memory clusters will still be testable via Boundary Scan.
Also, alternatives to memory cluster tests will be
discussed, such as BIST2 and test resources embedded in
the memory device.

1. Introduction
The purpose of this paper is to provide the reader with an
overview of the capabilities and limitations of various
board and system level Boundary Scan (a.k.a. IEEE-
Std.1149.1, JTAG) applications common for modern
electronics. Test applications such as Interconnect Testing
(Continuity Testing) between Boundary Scan I/O pins
and between Boundary Scan and non-Boundary Scan I/O
pins will be discussed as well as In-System Configuration
(ISC) applications for EEPROM3 and PLD4/FPGA5
devices. We will focus especially on board level memory
cluster test applications. Topic related Design-For-
Testability guidelines will be interwoven throughout the
paper. The basics of the IEEE-1149.1 standard will not be
discussed in this paper. Rather, readers not familiar with
the subject are referred to [1] and [2].

IEEE-1149.1 (referred to as Boundary Scan throughout
this paper) describes a quasi static test methodology for

1 DfT: Design for Testability
2 BIST: Built-In Self Test
3 EEPROM: Electrical Erasable Programmable Read Only
Memory
4 PLD: Programmable Logic Device
5 FPGA: Field Programmable Gate Array

digital circuits, mainly used for structural testing of board
and system level connectivity. The standard does not
provide for the measurement of PCB6 trace or component
parameters, such as resistance, capacity, inductivity,
oscillator frequency, power consumption, etc. IEEE-
Std.1149.4 has been developed to cope with analog and
mixed signal test applications at board level. In addition
to IEEE-1149.1 resources, components compliant to
IEEE-1149.4 provide special test resources for the
injection of current to and the measurement of voltage
levels at circuit nodes. [3] [4]

Especially in the telecommunications and the networking
industry, high-speed interconnects running at a data rate
of multiple Gigahertz are common today. Endpoints on
such interconnects are typically AC coupled. IEEE-
1149.1 does not provide for the test of such signal paths.
Also, IEEE-1149.1 has limitations in the test of
differential lines. To cope with such limitations, the new
IEEE-Std. 1149.6 has been developed. [5] [6]

2. Boundary Scan Interconnect Test

2.1 Board level interconnect test
Typically, today’s electronic designs include one or more
devices that provide testability features compliant to
IEEE-1149.1. If the board designer provided the means to
access the Test Access Port of such devices, ideally by
creating a Boundary Scan chain (Figure 1), then the
interconnections between Boundary Scan I/O’s can be
verified. The goal of such an Interconnect Test is to detect
and - if possible - diagnose structural faults such as stuck-
at1/0 or shorted nets and open pins.

Interconnect Tests are executed while the Boundary Scan
devices involved are in EXTEST7 mode. The test
sequence includes preloading of Boundary Scan cells
(input and output cells as well as control cells) and
subsequent capturing of net logic levels in input cells.
The IEEE-1149.1 (Boundary Scan) test resources

6 PCB: Printed Circuit Board
7 EXTEST: pin permission Boundary Scan instruction
defined in IEEE-1149.1-2001, section 8.8

available on a net determine the degree of testability for
structural faults on that net. Figure 2 provides a few
examples of nets with different amounts of Boundary
Scan test resources.

Figure 1: Board level scan chain; ring configuration

Figure 2-A represents a net that includes a pin with a
Boundary Scan output cell only. The output cannot be
deactivated. Furthermore, there is no Boundary Scan
input cell available. Thus, open or stuck-at faults on such
a net cannot be detected via Boundary Scan. To be able to
test the net for such faults, additional resources (at least
one Boundary Scan input cell) need to be provided, for
example by means of external test modules connected to
the net under test through a test point or peripheral
connector pin. A short between a net with an output cell
only and another net can only be detected if the other net
provides at least a Boundary Scan input cell.

In Figure 2-B the only Boundary Scan pin available
provides an input cell. It does not have any output
capability. On a net like this the testability via Boundary
Scan is limited to the detection of a stuck-at fault
(partially) or an open, if the net provides a pull resistor.
For example, if the net has a pull down resistor, a
Boundary Scan test can detect a stuck-at high fault, but
not a stuck-at-low fault. An open can only be detected in
this case, if the open pin features internal pull-up
circuitry. For such a test, the input cell would be
preloaded with logic value High (Shift-DR state). When
the TAP Controller8 is passing through the Capture-DR
state, the input cell should capture a Low (due to the pull-
down resistor on the net). If the cell does not capture a
Low, the pin seems open or stuck-at high, or the pull-
down resistor may be missing. To detect a short between
the net shown in Figure 2-B and another net, this other
net must provide at least a Boundary Scan output cell.

8 TAP Controller: Test Access Port Controller (state
machine), defined in IEEE-1149.1-2001, section 6

Figure 2: Nets with various levels of testability

The net shown in Figure 2-C includes one Boundary Scan
output cell and one Boundary Scan input cell.

Figure 2-D represents the connection between a Boundary
Scan output cell that can be deactivated and a Boundary
Scan input cell.

In Figure 2-E, the Boundary Scan output cell can be
deactivated and is self-monitoring. The other Boundary
Scan cell in this net is an input cell.

The net in Figure 2-F includes two bi-directional
Boundary Scan pins, each with individual cells for
control, input data, and output data.

The Boundary Scan resources available in those nets
pictured in Figures 2-C through 2-F allow the detection of
opens, stuck-at faults and shorts, however, opens cannot
be localized down to the pin level (either of the two pins
could be open). If the net shown in Figure 2-F would be
shorted to another net and at the same time one of the two
Boundary Scan pins in net 2-F would be open, that open
pin could be localized, though.

Figure 2-G shows a net with three bi-directional
Boundary Scan pins with three cells each (Control, Input,
and Output). Such a net would be fully testable.
Furthermore, if only one pin is open, that pin could be
localized.

In Figure 2-H, some of the Boundary Scan pins use
shared control cells. Shared control cells limit the control
over the involved Boundary Scan pins, since those pins
can only be activated or deactivated together. E.g., in this
example the two Boundary Scan output pins on the upper
left side of the circuitry share one control cell. The two
bi-directional Boundary Scan pins on the right also share
a control cell. An output only Boundary Scan pin on a
third device is connected to one of the bi-directional pins.
Since that output pin cannot be deactivated, the bi-
directional pin it is connected to must be deactivated so
that no driver contention is caused on the net. By keeping
one of the bi-directional pins deactivated, the other pin
sharing the same control cell remains deactivated at all
times as well. Thus, the two bi-directional pins can be
used as inputs only, which results in a reduced
diagnosability. Opens, shorts and stuck-at faults can be
detected on both nets, but opens cannot be localized.

The discussion above presumed that there are no active
non-Boundary Scan pins included in the nets shown in
figure 2. In reality, that is usually not the case though.
Rather, pins from passive components, such as resistors,
capacitors, connectors, etc., or analog, mixed-signal, and
digital components may be connected to the same net. To
safely test such nets using Boundary Scan the ATPG tools
need an understanding of these pin functionalities and,
specifically, if and how active non-Boundary Scan pins
can be deactivated [7]. Ideally, non-Boundary Scan pin
functionality is described in device libraries, so that it is

easily available for automated test generation. If the
ATPG tools are able to analyze the pin functionality, that
information can be used to automatically generate “safe
test vectors” – test pattern include automatically set
constraints ensuring the avoidance of bus contentions in
case there are no faults on the interconnections.
Analyzing the non-Boundary Scan pin functionality also
allows the ATPG tool to generate test programs with the
best possible coverage at the smallest possible number of
test vectors.

In Figure 3, below, two bidirectional buffers and a
memory device share the same data bus. Any Boundary
Scan tests need to be generated so that only one of these
devices drives the bus signals at any time (“safe test”). In
this example, the direction of the two buffers should be
set so that they don’t drive against each other and the
memory device should be disabled. Both buffer devices
should be activated; this way the signal path from one
Boundary Scan component to the other can be tested as
part of the interconnect test and open faults on the buffer
devices and shorts on the bus structure shared by the
buffers and the memory can be detected. Alternatively,
the two buffers could be disabled during interconnect test
and the circuitry could be tested as part of a cluster test.
Open faults on the memory pins would be tested as part
of a memory cluster test.

Figure 3: Bus structure

2.2 System level interconnect test
Board level test is often followed by system assembly and
test. Main boards and daughter cards may be joined and
modules may be plugged into a system backplane. It is
beneficial to test such system level interconnects before
attempting functional tests. Even when the system is
dispatched in the field, remote and on-site system level
test and In-System Configuration applications can reduce
maintenance cost dramatically. Boundary Scan is a very

U600

U500

U603

U300

D0
D1
D2
D3
D4
D5
D6
D7

U601

XBD0
XBD1
XBD2
XBD3
XBD4
XBD5
XBD6
XBD7

DIR_4
/OE_4
DIR_3
/OE_3

BD0
BD1
BD2
BD3
BD4
BD5
BD6
BD7

/OE_4
DIR_4

/OE_3
DIR_3

/OE_SR/OE_SR

XBD0
XBD1
XBD2
XBD3
XBD4
XBD5
XBD6
XBD7

D0
D1
D2
D3
D4
D5
D6
D7

BD0
BD1
BD2
BD3
BD4
BD5
BD6
BD7

BD0
BD1
BD2
BD3
BD4
BD5
BD6
BD7

blank

/CS_SR/CS_SR

good candidate for such system level applications. To
apply test pattern at a system level, the Boundary Scan
infrastructure needs to be extended, though. Test vectors
need to be routed from a controlling device (the Boundary
Scan Controller) to individual devices or boards within
the system. Scan paths may be split to group certain
components in separate chains. Multidrop scan chain
configurations for system level test require addressable
chain routing devices [8].

A multidrop chain design at system level allows sharing
one backplane IEEE-1149.1 test bus between all boards
plugged into the backplane. A simple scan chain design,
connecting all board scan chains in series at system level,
would require all slots to be equipped; otherwise the scan
chain would be broken. An addressable test bus interface
on each individual card within the system provides for
various levels of test, such as device level test, board level
test, as well as system level interconnect test.

2.3 Limitations of IEEE-1149.1 interconnect test
A Boundary Scan Interconnect Test can only test
connections (including transparent components) between
Boundary Scan I/O pins. Such an interconnect test is
running at relative slow speed and thus can be considered
a static test. For example, with a Boundary Scan chain
that is 10,000 cells long and a TCK frequency of 10MHz,
the parallel test pattern throughput rate is approximately
1kHz (the rate at which the Boundary Scan I/O’s can
change their state during the test). That means that an
IEEE-1149.1 interconnect test cannot detect connectivity
problems on high speed interconnects that occur only at
functional speed (e.g. cold solder joints that provide just
enough connectivity for static tests, but cause functional
faults at high speed because of a higher resistance).

Another limitation of Boundary Scan interconnect tests is
that non-Boundary Scan pins (pins without IEEE 1149.x
test resources) typically are not included in such tests.
Exceptions are transparent devices such as buffers and
transceivers, as well as serial resistors. To include other
non-Boundary Scan pins in a Boundary Scan test, so
called cluster tests would have to be executed.

3. Cluster Testing
Circuitry that is not directly testable via Boundary Scan
we can consider a cluster. For example, combinatorial
logic between Boundary Scan I/O pins can be called a
logic cluster (see Figure 4). Power supply and distribution
circuitry on a PCB is considered an analog cluster.
Discrete (as opposed to embedded) memory devices, with
or without external glue logic, are considered Memory
Clusters. So called Interface Clusters comprise circuitry

that connects the board to the outside world or provides
visual or audio interfaces, respectively.

Often times, the input and output signals for such clusters,
which may involve one or more individual components,
are connected to Boundary Scan I/O pins. Utilizing those
Boundary Scan I/O pins to stimulate the cluster inputs
and to observe the cluster outputs, it is often times
possible to create a basic functional test for the cluster.
Since Boundary Scan test vectors are applied at a fairly
slow rate, depending on scan chain length and TCK
frequency, such cluster tests are usually not running at the
same speed as the circuitry would be running at in
functional mode.

Figure 4: Example of a Logic Cluster

3.1 Logic and Interface Cluster testing
A Logic Cluster test verifies the connections from
Boundary Scan pins to Cluster inputs and outputs and
connections within the cluster as well as the general
cluster functionality. Fault isolation is limited due to
missing Boundary Scan access to all cluster-internal
nodes.

In cluster testing it is as important to avoid bus contention
as it is in any other kind of Boundary Scan test. Figure 4
shows a logic cluster where the cluster inputs and outputs
are connected to the same Boundary Scan device. The
logic cluster includes four 2-input NAND gates and four
non-inverting signal buffers. Two of those buffers drive
the same net. To avoid bus contentions, possibly resulting
in damage of one of the drivers, only one of these two
buffers may be enabled at any time. When creating test
pattern for this circuitry either the developer or the
automated test generation tool must find such nets that
include multiple drivers and ensure that only one driver is
active at any time.

An Interface Cluster test attempts to verify the interface
connectivity and basic functionality. Since interface
circuitry typically includes peripheral connectors, it is
desirable to provide external test resources to those
connectors to improve the testability and include the
connectors in the test coverage.

Cases exist where generating cluster test with ATPG9
tools is either not possible or not efficient. Here a high-
level programming language is helpful, allowing the
design engineer or the test engineer to manually write test
source code at an abstract level while the Boundary Scan
software tools handle the test resources at a low level
(e.g. control of the TAP state machines, mapping of the
Boundary Scan cells to be set, etc.). Such a programming
language that allows the design or test engineer to
concentrate on the test task itself, rather than on the
underlying Boundary Scan protocols, can reduce test
development time dramatically. Combining the flexibility
a programming language provides with the insight and
control graphical debugging tools can provide, Boundary
Scan applications can be taken to the next level, up from
just automatically generated interconnect and cluster tests
to extended Boundary Scan applications that may even
turn into integrated Boundary Scan and Functional Tests.

For an example, including test program sequence and
source code snippets, please refer to Appendix A.

3.2 Memory Cluster testing
The purpose of a memory cluster test at board level is to
determine that all memory pins are soldered properly, the
memory is functioning, and there are no shorts, open, or
stuck-at faults along the signal path from the controlling
device – the Boundary Scan component(s) used to apply
the test pattern – to the memory device. The memory
cluster may or may not include glue logic and/or buffer
circuitry. Figure 5 shows an example for a SRAM10
memory cluster that includes buffer components on the
address bus and data bus.

To test the connections between the Boundary Scan
components (U300, and U603 in Figure 5) and the SRAM
(U500 in Figure 5), a sequence of test pattern is written to
the memory. When the respective memory locations are
read afterwards, the same pattern should be returned by
the memory. The test pattern must include control for the
buffer devices also (U600, U601, and U604 in Figure 5).
In the example in Figure 5 the memory device has 18
address lines and 16 data lines.

Memory Cluster tests usually are generated by ATPG
tools. However, a functional description for the memory
has to be provided to the ATPG tool. To simplify test

9 ATPG: Automated Test Pattern Generation
10 SRAM: Static Random Access Memory

development and reduce the development time, functional
device descriptions (see Appendix B for an example) can
be provided in device libraries. Boundary Scan software
can rely on models to provide the necessary information
for write and read access as well as memory setup
sequences. Similar, functional descriptions for buffer and
transceiver allow the software to automatically generate
control pattern for such devices. All the ATPG tool has to
do then is to match up the memory pins with the proper
Boundary Scan I/O pins to apply the test pattern and to
generate the test pattern itself. Latter typically depends on
the number of address and data lines as well as on the
type of memory. The goal is not to test the complete
memory storage space for proper functioning, but rather
to determine the structural integrity of the connections
between the controlling Boundary Scan device and the
memory. Here, as with any other Boundary Scan test
application, it is important that the ATPG tool generates
safe test vectors, that don't cause harm to the Unit Under
Test.

Figure 5: Example of a Memory Cluster

To test for opens and shorts, a test sequence such as the
one presented in Figure 6 can be applied.

For an example of a SRAM memory cluster test sequence
see Appendix C.

For a standard asynchronous SRAM device the write and
read cycles are very simple; only three control signals are
required (Chip Enable, Write Enable, and Output Enable).
In addition to the control signals on the memory, the
buffer devices need to be controlled to enable access to
the SRAM from the Boundary Scan component (see
Figure 5). The buffer devices themselves become part of
the memory cluster; if the Boundary Scan software
detects a fault on an address or data line, the fault location
can be on the Boundary Scan pin, one of the buffer pins
(input or output), or the SRAM pin. Of course, there
could even be multiple faults on this signal path. A fault

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U600

Control

U500 (RAM)

U603

 U300

DATA (upper)

A0
A1
A2
A3
A4
A5
A6
A7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U601

A0
A1
A2
A3
A4
A5
A6
A7

DATA

DATA (lower)

DATA

ADDR

DATA

U700

Control Control

ADDR

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U604

A0
A1
A2
A3
A4
A5
A6
A7

/OE_2
DIR_4
/OE_4
DIR_3
/OE_3

/OE_4
DIR_4

/OE_3
DIR_3

/OE_2

blank

on the signal path can be detected, but if the connections
between the Boundary Scan device and the memory
device are not direct but rather go through buffers or glue
logic, diagnosability is limited. Only if there are several
Boundary Scan devices available on the address and data
bus, the Boundary Scan pins themselves may already be
verified as part of the Interconnect Test.

The example given here represents a very simple memory
cluster. Developments in memory architecture in the past
decade introduced a wide variety of new types of
memories with often times rather complex control cycles
required to access a memory device (to write and read
data). In the following paragraphs we will discuss some
of the most common memory types.

3.2.1 Types of memory devices
Memory devices can be classified as either volatile (e.g.
SRAM, DRAM11, FIFO12) or non-volatile memory (e.g.
EPROM, FLASH EEPROM).

RAM (Random Access Memory) can be classified as
static or dynamic memory. A Static RAM (SRAM) cell
stores data in a flip-flop. The device retains the memory
as long as power is supplied (hence the term static). A
Dynamic RAM (DRAM) stores data as an electrical
charge, which gradually discharges, and thus requires
periodical refresh/ access to retain its data (hence the term
dynamic).

Memories are also differentiated by the way they are
accessed: synchronous vs. asynchronous. An
asynchronous memory does not depend on a clock to
write or read data, whereas synchronous memories are
synchronized with an external clock signal (with the
rising and falling clock edges, to be specific).

SRAM devices, for example, are available as both
asynchronous and synchronous memory. Synchronous
SRAM devices (SSRAM) are offered in a wide variety of
interface implementations. All have input registers which
latch the address, data, and control signals at the rising
edge of the clock signal. Some also feature an output
register for data. Depending on the implementation, we
differentiate between Single Data Rate, Double Data
Rate, and other memory interfaces.

With Single Data Rate (SDR) SSRAM, one data word is
transferred between memory and controller per clock
cycle (on the rising clock edge). Such SDR SSRAM come
in different flavors: Pipelined, Flowthrough, Burst,
Network. Pipelined SDR SSRAM offer both input
registers as well as an output register, latched at the rising
clock edge. This means that a write access to a pipelined
SDR SSRAM takes one clock cycle, while a read access
takes two clock cycles. Flowthrough SDR SSRAM, on

11 DRAM: Dynamic Random Access Memory
12 FIFO: First-In/First-Out

Stuck-at test on data lines

1) write 0x0000 to address 0x00000
2) write 0xFFFF to address 0x3FFFF
3) read address 0x00000, expect 0x0000 on data lines
4) read address 0x3FFFF, expect 0xFFFF on data lines

short test 1
(short between address and data lines)

 1) write 0xFFFF to address 0x00000
 2) read address 0x00000, expect 0xFFFF on data lines
 3) write 0x0000 to address 0x00001
 4) shift address by one bit (walking-one pattern), write 0x0000 to
 address, repeat for a total of 17 times
 5) read address 0x00001, expect 0x0000 on data lines
 6) shift address by one bit (walking-one pattern), read address,
 expect 0x0000 on data lines, repeat for a total of 17 times
 7) write 0x0000 to address 0x3FFFF
 8) read address 0x3FFFF, expect 0x0000 on data lines
 9) write 0xFFFF to address 0x3FFFE
10) rotate address by one bit (walking-zero pattern), write 0xFFFF
 to address, repeat for a total of 17 times
11) read address 0x3FFFE, expect 0xFFFF on data lines
12) shift address by one bit (walking-zero pattern), read address
 expect 0xFFFF on data lines, repeat for a total of 17 times

short test 2
(short between data lines)

 1) write 0x0001 to address 0x00000
 2) read address 0x00000, expect 0x0001 on data lines
 3) shift data by one bit (walking-one pattern), write again to
 address 0x00000, read address 0x00000, expect walking-one
 pattern on data lines, repeat for a total of 15 times
 4) write 0xFFFE to address 0x3FFFF
 5) read address 0x3FFFF, expect 0xFFFE on data lines
 6) rotate data by one bit (walking-zero pattern), write again to
 address 0x3FFFF, read address 0x3FFFF, expect walking-zero
 pattern on data lines,, repeat for a total of 15 times

stuck-at and short test on address lines

 1) write 0x0000 to address 0x00000
 2) write 0x0001 to address 0x00001
 3) shift address by one bit (walking-one pattern), increment data
 by 1, write data to address, repeat for a total of 17 times
 4) read address 0x00000, expect 0x0000 on data lines
 5) write 0x0000 to address 0x00000
 6) read address 0x00001, expect 0x0001 on data lines
 7) shift address by one bit (walking-one pattern), read address,
 expect data read on data lines incremented by 1, repeat for a
 total of 17 times
 8) write 0x0000 to address 0x3FFFF
 9) write 0x0001 to address 0x3FFFE
10) rotate address by one bit (walking-zero pattern), increment data
 by 1, write data to address, repeat for a total of 17 times
11) read address 0x3FFFF, expect 0x0000 on data lines
12) write 0x0000 to address 0x3FFFF
13) read address 0x3FFFE, expect 0x0001 on data lines
14) rotate address by one bit (walking-zero pattern), read address,
 expect data read on data lines incremented by 1, repeat for a
 total of 17 times

Figure 6: Example for RAM Cluster test pattern

the other hand, do not have an output register, thus both
write and read access are one clock cycle long. Burst and
Network SDR SSRAM provide built-in circuitry to
enhance the data throughput, e.g. by reading multiple
words from sequential addresses or by interleaving write
and read accesses.

Double Data Rate (DDR) SSRAM can transfer 2 words
per clock cycle, one on the rising edge and one on the
falling edge of the clock signal. Thus, the data lines on
such devices operate on double the clock frequency. A
variant of DDR SSRAM, offering two independent ports
for read and write access, is called QDR SSRAM (Quad
Data Rate SSRAM) [9]. Each of the two ports on QDR
SSRAM transfers data at a rate of 2 words per clock
cycle, thus up to 2 words can be written to the memory
and up to 2 words can be read from the memory within
one clock cycle.

SDRAM memories are also available with various
interface implementations (e.g. DDR-SDRAM, DDR2-
SDRAM, RL-DRAM, RDRAM – a.k.a. Rambus – and
others).

FIFO memory devices feature a variety of interface
implementations as well, for example Clocked FIFO,
Dual Port FIFO, and Quad Port FIFO, just to name a few.

Common to all of these memory interfaces is that they are
much more complex than a standard SRAM interface.
There are more than three control signals to be handled
and often times a clock signal is involved. To be able to
test the connectivity between a controlling device and the
memory device within the scope of a memory cluster test
utilizing IEEE-1149.1 resources, full Boundary Scan
access to all required control signals as well as to the
address and data lines is required [10]. However,
especially the clock signal used to synchronize memory
access cycles may not be accessible via Boundary Scan,
but rather, it may be generated by an oscillator. If control
over that clock signal cannot be obtained, the memory
cluster test cannot be executed successfully.

3.2.2 Limitations on testability due to glue logic
and clock circuitry
As long as all pins on a memory device are connected
directly or indirectly (e.g. through buffer) to Boundary
Scan I/O pins, a cluster test can be created for the
memory. However, if the clock signal on a synchronous
memory device (e.g. a SDRAM) is not controllable via
Boundary Scan, the test pattern on address and data lines
as well as the memory control pins cannot be
synchronized to the clock and a test cannot be executed
successfully. To take control over a clock signal coming
from an oscillator for example, one could add a gating
circuitry that is rerouting the memory clock signal to a
Boundary Scan I/O pin whenever the cluster test is

running. Figure 7 illustrates an example for such a clock
gating circuit.

Here, the oscillator is enabled through the pull down
resistor Roe. By providing additional control on the
oscillator's /OE input pin (e.g from an otherwise unused
Boundary Scan I/O pin on a PLD/FPGA, or from an
external tester resource), the oscillator can be deactivated
and an alternative clock source can be provided. In above
diagram, an AND gate is used to gate the two clock
sources (on-board oscillator and alternative clock source).
While one of the two clock sources is active, the other
input of the AND gate is kept at logic High via a pull-up
resistor.

The more complex a memory interface is, the more
Boundary Scan shift cycles are needed to write one data
word to the memory or to read a data word from the
memory. This results in increased test execution time.

In addition to taking control over the clock signal for
synchronous memories, a memory cluster test can only be
executed successfully, if any glue logic that may exist to
decode bank select, chip select, and other memory control
signals is Boundary Scan accessible. The same is true for
any bus switching circuitry that may be used to multiplex
address and data lines. As mentioned before, the
controlling Boundary Scan component(s) needs full
access to the memory device (directly or indirectly) to be
able to emulate write and read access cycles.

We mentioned earlier in this paper that dynamic RAM
require periodical refresh of the data, otherwise the
memory contents will be lost. The required refresh rate is
so high that explicit Boundary Scan access cycles are too
slow to refresh the data and at the same time run a
memory cluster test. Typically this is not a problem
though, since most modern dynamic RAM devices feature
a self refresh or auto refresh algorithm (before applying
the test pattern, the memory device can be set up to
refresh itself periodically).

Figure 7: Clock gating to obtain BScan control

3.3 In-System Configuration applications

3.3.1 PLD and FPGA
Most modern programmable logic devices (PLD) and
FPGA devices provide an IEEE-1149.1 test bus interface
and support in-system configuration through that port.
Typically, programming control is built in to the device
and the control sequence and programming data is
provided by means of various file types, such as SVF
files, JAM files, STAPL (JEDEC-Std. 71) files [11], or
IEEE 1532 files [12]. (As a note regarding location of
PLD in the scan chain: If a PLD blocks data from
scanning out of its TDO during in-system configuration,
keep this device in a separate scan chain or put it at the
end of the scan chain, with no other BScan components
between this device and TDO of the board, or provide the
means to temporarily isolate the device for ISP.) Note that
FPGA devices typically feature configuration control pins
that have to be externally driven to a certain logic level to
make the component IEEE-1149.1 compliant. The BSDL
file and data sheet for the component provides respective
information. Modern FPGA often feature
programmability of I/O pin functionality and voltage
level. Thus, one has to decide whether to program the
component before test or run Boundary Scan tests first
(before device configuration).

3.3.2 EEPROM
FLASH devices and other EEPROM (such as serial
EEPROM based on I2C or SPI protocol) can be
programmed via Boundary Scan devices if access is
available to all memory pins required for programming
(either directly or indirectly). To reduce programming
time, a short scan chain and high TCK frequency are
required. Separate the BScan device used to program
EEPROM from other BScan devices (put it in a separate
scan chain) if those other devices support only a much
slower TCK frequency. Also, try to control all EEPROM
pins from the same BScan component (so that all other
BScan components can be kept in HIGHZ, CLAMP, or
BYPASS mode). Finally, programming speed can be
increased if frequently exercised control pins (such as
/WE) are accessed with parallel I/O resources rather than
Boundary Scan. Precondition for that is that the Boundary
Scan pin in that net can be disabled and that access to the
control pin is available via connector (preferably) or test
pad. Other techniques to speed up FLASH programming
via Boundary Scan are in development or are already
available as proprietary implementations.

Testing connection to a FLASH device by means of a
memory cluster test such as described in 3.2 above would
require multiple FLASH erase cycles, which typically is
impractical because of the length of time that would be
required for such a test. From a test engineer’s standpoint
it would be desirable to have IEEE-P1581 (see

section 4.3) implemented in FLASH devices for
connectivity test. Even better would be an implementation
of IEEE-1149.1 and IEEE-1532 resources.

4. Alternatives to Memory Cluster test
There are alternatives to memory cluster tests based on
Boundary Scan I/O pins surrounding the cluster.

4.1. Memories with IEEE 1149.1 test resources
Some vendors now offer memory devices with IEEE-
1149.1 resources built in. Sometimes, these devices are
not fully compliant to the IEEE 1149.1 standard for
example by not supporting EXTEST capability. Such
devices typically do support a test mode where the output
drivers are deactivated and all I/O pins (address, data, and
most control signals) provide capture capability. This –
even though limited – test capability allows at least to
include such memory devices in an automatically
generated interconnect test.

Examples for memory devices featuring IEEE 1149.1 test
resources include DDR, QDR, RLDRAM, and FIFO
memory from vendors such as CYPRESS,
GSI Technology, IDT, INFINEON, ISSI, MICRON,
NEC, SAMSUNG, SONY, and others. [13,14]

4.2. Memory BIST

Memory embedded into Processors, SOC’s13, ASIC’s14,
DSP’s15, and other devices often times can be tested with
Built-In Self Test (BIST) resources implemented into
these devices. In case of discrete memory at board or
system level, a connectivity test between a memory
device and its controlling counterpart (e.g. a processor)
could be run at-speed if the controlling device has test
resources embedded that can be used to apply at-speed
test vectors that exercise the memory circuitry.

4.3. IEEE P1581
Currently in the balloting process, this standard [15] has
been developed to define a test strategy for complex
memory devices which do not support IEEE 1149.1. This
standard describes a means to verify the memory I/O pin
connectivity (address, data, and control signals). The
memory cell structure is completely bypassed; a
combinational test circuitry implemented into the memory
device is used instead during test mode to link input and
output signals. A controlling device (typically an IEEE
1149.1 compliant component connected to the memory
device) applies a stimulus to the inputs and observes the
outputs of the memory’s test circuitry.

13 SOC: System On Chip
14 ASIC: Application Specific Integrated Circuit
15 DSP: Digital Signal Processor

5. Outlook for Boundary Scan
The authors of this paper expect that in the coming years
even more complex memories will feature IEEE 1149.1
or IEEE 1581 test resources.

For advanced applications of Boundary Scan,
IEEE 1149.4 and IEEE 1149.6 will most likely become
available in ASIC components first, since these types of
Boundary Scan require a more sophisticated design of the
test resources.

Furthermore, BIST for both embedded logic and memory
circuitry based on IEEE P1500 is likely to become
established quickly for SOC level testing once the
standard is approved.

Extending the reach of Boundary Scan, integrations with
other test methodologies such as Flying Probe,
Automated Optical Inspection, and Functional Test
improve cluster testing and achievable fault coverage.

6. Conclusions
Today, IEEE 1149.1 is well established and widely used.
Still, there are many areas on even the latest board
designs that require cluster testing because devices have
no Boundary Scan test resources implemented. Memory
devices are continuously becoming more complex and
provide faster speeds and more storage capacity [16]. The
bad news for test engineers is that logic cluster and
memory cluster testing becomes more complicated or
impossible on more complex UUT’s. Design For
Testability is more important than ever. The good news is
that SOC’s include more and more previously discrete
circuitry, thus removing clusters from the board level,
embedding it into the device; as a result BIST becomes
more important.

7. References
[1] IEEE Computer Society, IEEE Standard Test Access

Port and Boundary Scan Architecture - IEEE Std.
1149.1 2001, IEEE, New York, NY, 2001

[2] Kenneth P. Parker, The Boundary-Scan Handbook,

3rd Edition, 2003, Kluwer Academic Publishers,
Norwell, MA, 02061, ISBN: 1-4020-7496-4

[3] IEEE Computer Society, IEEE Standard for a

Mixed-Signal Test Bus - IEEE Std. 1149.4 1999,
IEEE, New York, NY, 1999

[4] Adam Osseiran, Analog and Mixed-Signal

Boundary-Scan, A Guide to the IEEE 149.4 Test

Standard, 1999, Kluwer Academic Publishers,
Norwell, MA, 02061, ISBN: 0-7923-8686-8

[5] IEEE Computer Society, IEEE Standard for

Boundary Scan Testing of Advanced Digital
Networks - IEEE Std. 1149.6 2003, IEEE, New
York, NY, 2003

[6] Bill Eklow, Carl Barnhart, Mike Ricchetti, Terry

Borroz, IEEE 1149.6 – A Practical Perspective,
Proceedings of International Test Conference 2003,
Paper 19.1, pp.494-502

[7] Bill Eklow, Richard Sedmark, Dan Singletary, and

Toai Vo, Unsafe Board States During PC-Based
Boundary Scan Testing, Proceedings of
International Test Conference 2001, Paper 22.3,
pp.615-623

[8] Clayton Gibbs, “Backplane Test Applications For

IEEE Std. 1149.1”, Proceedings of International
Test Conference 2003, Paper 43.1, pp 167-180

[9] QDR Development Team website,

http://www.qdrsram.com/

[10] Heiko Ehrenberg, White Paper: Design-For-

Testability Guidelines for Boundary Scan Test,
GOEPEL Electronics, 2004

[11] JEDEC, EIA/JEDEC JESD71 – Standard Test And

Programming Language (STAPL), EIA, Arlington,
VA, 1999

[12] IEEE Computer Society, IEEE Standard for In-

System Configuration of Programmable Devices -
IEEE Std. 1532 2002, IEEE, New York, NY, 2002

[13] IDT datasheet for 3.3V High-Density

Supersync II™ Narrow Bus FIFO IDT72V2113

[14] MICRON datasheet for RLDRAM II MT49H8M36,

featuring IEEE 1149.1

[15] IEEE P1581 website

http://grouper.ieee.org/groups/1581/

[16] www.MemoryStrategies.com

Appendix

A. Logic Cluster test example

LCD display cluster

The advantage of Boundary Scan tools that feature a high-level programming language in addition to ATPG tools is that
they provide a much better flexibility and support test applications that could not be covered with just automatically
generated test programs. A programming language allows for the development of test programs with branches and
conditional loops, vs. linear test pattern generated with ATPG tools. Examples for applications where a programming
language is very beneficial include sequential logic and circuitry for user interfaces (such as LED and LCD displays,
keyboards, speakers, etc.), where a Boundary Scan test of such circuitry borders on functional test applications.

A test for the LCD display cluster pictured above can easily be created manually in a high-level programming language. If
combined with Automated Optical Inspection tools, the test pattern written out to the LCD could automatically be visually
verified. Below is an example of a test flow for such an LCD cluster, with manually created test program snippets in the
CASLAN16 language.

16 CASLAN: CASCON Language, proprietary Boundary Scan programming language by GOEPEL electronic

B. Device model description for a SRAM device

Format..............: BSDM
Version.............: 4.0
Program.............: 'CASCON DEVICE LIBRARY'
Remark......:
"
SRAM 256KX16
KM6164000_TSOP44 (SAM)

19-04-99
TK / GOEPEL ELECTRONIC
BR
V
"

Component name...................: KM6164000_TSOP44 (NonBSC)
Type................: 'Ram'
-- Port table
-- Name Type
Port..: A4 'Normal' 'Input'
Port..: A3 'Normal' 'Input'
Port..: A2 'Normal' 'Input'
Port..: A1 'Normal' 'Input'
Port..: A0 'Normal' 'Input'
Port..: CS 'Normal' 'Input'
Port..: IO1 'Normal' 'Bidirectional' 'Output2'
Port..: IO2 'Normal' 'Bidirectional' 'Output2'
Port..: IO3 'Normal' 'Bidirectional' 'Output2'
Port..: IO4 'Normal' 'Bidirectional' 'Output2'
Port..: VCC1 'Normal' 'Linkage' 'SUPPLY'
Port..: VSS1 'Normal' 'Linkage' 'GROUND'
Port..: IO5 'Normal' 'Bidirectional' 'Output2'
Port..: IO6 'Normal' 'Bidirectional' 'Output2'
Port..: IO7 'Normal' 'Bidirectional' 'Output2'
Port..: IO8 'Normal' 'Bidirectional' 'Output2'
Port..: WE 'Normal' 'Input'
Port..: A17 'Normal' 'Input'
Port..: A16 'Normal' 'Input'
Port..: A15 'Normal' 'Input'
Port..: A14 'Normal' 'Input'
Port..: A13 'Normal' 'Input'
Port..: A12 'Normal' 'Input'
Port..: A11 'Normal' 'Input'
Port..: A10 'Normal' 'Input'
Port..: A9 'Normal' 'Input'
Port..: A8 'Normal' 'Input'
Port..: NC2 'Normal' 'Unknown'
Port..: IO9 'Normal' 'Bidirectional' 'Output2'
Port..: IO10 'Normal' 'Bidirectional' 'Output2'
Port..: IO11 'Normal' 'Bidirectional' 'Output2'
Port..: IO12 'Normal' 'Bidirectional' 'Output2'
Port..: VCC2 'Normal' 'Linkage' 'SUPPLY'
Port..: VSS2 'Normal' 'Linkage' 'GROUND'
Port..: IO13 'Normal' 'Bidirectional' 'Output2'
Port..: IO14 'Normal' 'Bidirectional' 'Output2'
Port..: IO15 'Normal' 'Bidirectional' 'Output2'
Port..: IO16 'Normal' 'Bidirectional' 'Output2'
Port..: LB 'Normal' 'Input'
Port..: UB 'Normal' 'Input'
Port..: OE 'Normal' 'Input'
Port..: A7 'Normal' 'Input'
Port..: A6 'Normal' 'Input'
Port..: A5 'Normal' 'Input'
Package.............:PackageBegin 'Package'

Pins..:Packagebegin
 A4 1,
 A3 2,
 A2 3,
 A1 4,
 A0 5,

 CS 6,
 IO1 7,
 IO2 8,
 IO3 9,
 IO4 10,
 VCC1 11,
 VSS1 12,
 IO5 13,
 IO6 14,
 IO7 15,
 IO8 16,
 WE 17,
 A17 18,
 A16 19,
 A15 20,
 A14 21,
 A13 22,
 A12 23,
 A11 24,
 A10 25,
 A9 26,
 A8 27,
 NC2 28,
 IO9 29,
 IO10 30,
 IO11 31,
 IO12 32,
 VCC2 33,
 VSS2 34,
 IO13 35,
 IO14 36,
 IO15 37,
 IO16 38,
 LB 39,
 UB 40,
 OE 41,
 A7 42,
 A6 43,
 A5 44
 Packageend

Description...:Descriptionbegin
(FUNCTION
 (BUS
 (ENABLECONDITION (LOW OE)
 (LOW CS)
 (LOW LB)
 (HIGH WE)
)
 (PIN IO1 := ACTIVE)
 (PIN IO2 := ACTIVE)
 (PIN IO3 := ACTIVE)
 (PIN IO4 := ACTIVE)
 (PIN IO5 := ACTIVE)
 (PIN IO6 := ACTIVE)
 (PIN IO7 := ACTIVE)
 (PIN IO8 := ACTIVE)
)
 (BUS
 (ENABLECONDITION (LOW OE)
 (LOW CS)
 (LOW UB)
 (HIGH WE)
)
 (PIN IO9 := ACTIVE)
 (PIN IO10 := ACTIVE)
 (PIN IO11 := ACTIVE)
 (PIN IO12 := ACTIVE)
 (PIN IO13 := ACTIVE)
 (PIN IO14 := ACTIVE)
 (PIN IO15 := ACTIVE)
 (PIN IO16 := ACTIVE)
)
 (RAM
 (Address

 (Pin A0)
 (Pin A1)
 (Pin A2)
 (Pin A3)
 (Pin A4)
 (Pin A5)
 (Pin A6)
 (Pin A7)
 (Pin A8)
 (Pin A9)
 (Pin A10)
 (Pin A11)
 (Pin A12)
 (Pin A13)
 (Pin A14)
 (Pin A15)
 (Pin A16)
 (Pin A17)
)
 (Data
 (PIN IO1)
 (PIN IO2)
 (PIN IO3)
 (PIN IO4)
 (PIN IO5)
 (PIN IO6)
 (PIN IO7)
 (PIN IO8)
 (PIN IO9)
 (PIN IO10)
 (PIN IO11)
 (PIN IO12)
 (PIN IO13)
 (PIN IO14)
 (PIN IO15)
 (PIN IO16)
)
 (Control
 (PIN CS)
 (PIN LB)
 (PIN UB)
 (PIN WE)
 (PIN OE)
)
 (Inactive
 D, Z, HHHHH
)
 (Write
 (Step D, D, LLLHH)
 (Step D, D, LLLLH)
 (Step D, D, LLLHH)
)
 (Read
 (Step D, D HHHHHHHHHHHHHHHH, LLLHH)
 (Step D, Z, LLLHH)
 (Step D, E, LLLHL)
 (Step D, Z, LLLHH)
)
)
) Descriptionend

C. Test flow for a SRAM Cluster test

Below is a test flow for an automatically generated memory cluster test for the SRAM memory cluster
pictured in the diagram above. See also Figure 6 in the main part of this paper. The ATPG tool needs to
generate safe test pattern, making sure that no bus contentions occur (neither within this memory cluster
nor throughout the rest of the circuitry on the Unit Under Test).

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U600

Control

U500 (RAM)

U603

 U300

DATA (upper)

A0
A1
A2
A3
A4
A5
A6
A7

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U601

A0
A1
A2
A3
A4
A5
A6
A7

DATA

DATA (lower)

DATA

ADDR

DATA

U700

Control Control

ADDR

Y0
Y1
Y2
Y3
Y4
Y5
Y6
Y7

U604

A0
A1
A2
A3
A4
A5
A6
A7

/OE_2
DIR_4
/OE_4
DIR_3
/OE_3

/OE_4
DIR_4

/OE_3
DIR_3

/OE_2

blank

Load all Bscan devices with SAMPLE

Begin

Preload Bscan registers

Set safe conditions for UUT circuitry

Stuck-At test of DATA lines

Load all Bscan devices with EXTEST

Short test between DATA lines

Short test between DATA and ADDRESS
lines

All tests passed?

Set ExitCode to 0 (PASS condition) Set ExitCode to 256 (burst FAIL condition)

End
STOP 0; STOP 256;

yes no

Stuck-At and Short test of ADDRESS lines

